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Abstract

In a dynamic allocation setup, we experimentally study agents’ choices under the
First-In-First-Out (FIFO) and Last-In-First-Out (LIFO) queuing protocols. We find
that agents are nearly rational under FIFO but tend to be overselective under LIFO.
Within the model that anchors our experiment, we show that the magnitude of such
an excessively selective bias reduces the welfare performance gap between FIFO and
LIFO. Given the strategic complementarities inherent in LIFO, an agent’s overselective
behavior may arise from beliefs that others will act overselectively. Yet we show that
overselection persists in a supplemental treatment where subjects interact with non-

strategic robots.
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1 Introduction

1.1 Overview

We study a dynamic allocation setting where agents match with items over time. Examples
of these environments are widespread, including the assignment of public housing, medical
appointments, deceased donors’ organs, etc. The theoretical literature has compared alterna-
tive queuing protocols, assessing their relative efficiency performances. In particular, much
attention has been given to the First-In-First-Out (FIFO) and the Last-In-First-Out (LIFO)
protocols. The FIFO protocol is the most common, as priority is often tied to arrival times.
For example, a first-come-first-served rule is used by restaurants to allocate diners to tables,
or by universities to assign course slots to students. Implementing LIFO is more challenging,

’ since

as it is subject to manipulation through exit-and-reenter and is considered “unfair,’
individuals who just arrived are served first (see Kahneman et al.| (1986)), Margaria (2024),
and references therein) ]

Despite its implementation challenges, the LIFO protocol has received much attention
in the queuing theoretical literature as an alternative to FIFO. Since an agent’s priority
deteriorates over time under LIFO, but improves under FIFO, agents are expected to be less
selective under LIFO than under FIFO. This difference in queuing behavior implies mixed
efficiency comparisons depending on the theoretical model under consideration. While a
more selective behavior under FIFO yields the benefits of increased market thickness, it also
imposes negative queuing externalities when waiting costs are present, and could result in
the LIFO protocol being socially more desirable.

Our research question arises from the observation that the real-world relative perfor-
mances of these protocols crucially depend on how closely individual behavior aligns with
the rationality assumed in theoretical models. To investigate this issue, we design an exper-
iment to study agent behavior in FIFO and LIFO queues. Using the model that anchors the
experiment, we also evaluate the efficiency implications of the behavioral patterns observed
in the experiment.

In particular, we build a dynamic allocation model with no waiting costs, which is well-

!Nonetheless, LIFO naturally arises in some applications where agents not only choose but are also chosen
to be matched. For example, in child adoption, adoptive parents tend to prefer younger children (see|Baccara
et al| (2014)). In such cases, birth mothers of later-born children have priority in the choice of adoptive
parents, resulting in a setting equivalent to a LIFO protocol. Similar considerations apply to perishable
goods and to environments where the desirability of a match decreases with the time spent on the market
(e.g., unemployed workers or houses on the real estate market).



suited for experimental investigation. At every period, one agent and one item arrive at
the market. Since agents have a lifespan of two periods, any agent on the market is either
“young” or “old.” Items’ values are common across agents and drawn independently from the
same uniform distribution. An item can be offered to an agent only if it is compatible with
her, and compatibility is independent across items and agents. At any period, an arriving
item is offered to compatible agents according to either a FIFO or a LIFO protocol. If the
item is accepted by an agent, the agent and the item leave the market matched. If the item
remains unmatched, it is discarded at the end of its arrival period. Also, any agent still
unmatched at the end of her two-period lifespan leaves the market.

First, we assume that agents behave rationally and study the efficiency properties of the
equilibrium under the FIFO and the LIFO protocols. In a rational equilibrium, a young agent
accepts an item if and only if its value exceeds the agent’s continuation value from waiting.
We show that, under FIFO, the rational equilibrium threshold is higher than the socially
optimal one, while under LIFO, it is lower. Also, in our setting, the rational equilibrium
under FIFO is more efficient than the one under LIFO.

Next, we relax the rationality assumption and study behavioral equilibria. In particular,
agents’ threshold strategies may differ from their continuation payoffs from waiting, either
underselective or overselective relative to the rational benchmark. We require only that the
strategies satisfy Minimal Queuing Rationality (or MQ-rationality). Specifically, an agent
is MQ-rational if (i) she recognizes that her future prospect is worse than always being
offered an item, so she accepts any item valued more than the items’ average, and (ii) she
understands her prospects deteriorate more under LIFO than FIFO, making her relatively
less selective under LIFO. If agents behave rationally under FIFO and are MQ-rational under
LIFO, we show that the efficiency gap between the FIFO and LIFO protocols first decreases
and then increases as agents become increasingly overselective under LIFO.

We design a laboratory experiment featuring reduced-form settings that are strategically
equivalent to the FIFO and LIFO protocols of our model. We find that the subjects by
and large satisfy MQ-rationality, and their behavior under FIFO converges quickly to the
rational benchmark. However, under LIFO, the subjects remain consistently overselective
than the rational benchmark. The magnitude of this bias reduces the efficiency gap between
FIFO and LIFO, bringing the efficiency under LIFO closer to the efficiency generated by the
(approximately rational) behavior under FIFO within our model.

To explore the causes of the overselective behavior under LIFO, we conduct a supple-

mentary experiment and some additional analysis. First, note that the LIFO setup displays



strategic complementarities; if a subject expects others to be overselective, the best response
is to be overselective herself. To offset this strategic effect, in a supplemental treatment,
subjects play the reduced-form LIFO game against a non-strategic robot. We find that
overselectivity persists in this setting, though to a lesser extent. To explain the residual
overselectivity, we apply some well-known behavioral models and we find that the Quantal
Response Equilibrium framework, combined with mimicking behavior, provides the best,
although not conclusive, fit for our findings.

To our knowledge, this is the first attempt to empirically evaluate the rationality of agents
in FIFO and LIFO queues. The main takeaway of our analysis is that, in an experiment
anchored by a simple theoretical model, agents are approximately rational under FIFO but
overselective under LIFO with respect to the rational benchmark. The goal of our model is
to provide a tractable queuing setup that delivers robust and testable results. Specifically, in
our model, a single parameter measures agents’ rational and behavioral decisions, allowing
us to assess and compare the rationality of agents across alternative queuing protocols. We
stress that the welfare rankings among the queuing protocols are highly dependent on the en-
vironment. Therefore, the overselectivity we uncover under LIFO can have different welfare
implications depending on the model at hand. As an illustration, we evaluate the welfare
implications of the overselective bias in the model anchoring our experiment. If we had in-
troduced substantial waiting costs into our model, the theoretical efficiency ranking between
the protocols would have reversed because, as mentioned above, queuing externalities would
arise under FIFO. Then, a moderate overselective bias under LIFO, which still improves the

protocol’s performance, could potentially increase the welfare gap between FIFO and LIFO.

1.2 Related Literature

Dynamic matching problems, in particular dynamic allocation ones in which agents match
with items over time, have received significant attention in the theoretical queuing and
economics literature. For a survey, see Baccara and Yariv| (2021) and references therein.

Starting from [Naor| (1969), many papers in this literature have explored the trade-offs
associated with alternative priority protocols. In settings with waiting costs, agents under
FIFO tend to wait inefficiently long because they do not internalize the negative externalities
on others when they decide to stay in the queue rather than leave. In contrast, LIFO rules
out such externalities, often achieving socially superior outcomes (see also [Hassin| (1985));
Hassin and Haviv| (2003); |Su and Zenios| (2004), and Baccara et al.| (2020)).

Generally, welfare rankings across protocols vary depending on the specific model under



consideration. Notably, [Bloch and Cantala| (2017) study a dynamic allocation model with
a fixed-length queue, and they show that FIFO can be optimal among protocols assigning
some priority to agents who arrived first (i.e., mixtures between FIFO and uniform random
priority, hence excluding LIFO). The negative externality pointed out by [Naor| (1969)) does
not exist in Bloch and Cantala (2017) because the number of agents in the queue remains
the same, regardless of each agent’s decision. More recent work on the optimal design of
queuing protocols includes |Ashlagi et al.| (2025) and |Che and Tercieux! (forthcoming).

The experimental and empirical literature on queuing behavior is sparse, and to our
knowledge, it has not addressed behavioral patterns across protocols. (Conte et al.| (2014
consider an experiment where agents under time pressure select a FIFO queue among multi-
ple ones differing in length, server speed, and entry fee. Dold and Khadjavi| (2017)) estimate
the willingness to pay for a more favorable queue slot under FIFO. [Kremer and Debo| (2012)
experimentally study queue-joining behavior when service quality is uncertain and, therefore,
herding may arise| On the empirical side, [Batt and Terwiesch| (2015)) and |Chan et al.| (2017)
document the impact of delays on queue abandonment and outcomes in medical emergency

departments.

2 The Model

2.1 Setup

We consider a discrete-time, infinite-horizon, overlapping-generation matching market be-
tween agents and items. At the beginning of each period, t € {1,2,...}, one agent and one
item arrive on the market. While each item must leave at the end of its arrival period, an
agent can stay on the market for up to two periods before leaving. Hence, we refer to agents
in their first and second periods on the market as “young” and “old,” respectively. When
two agents are present simultaneously, they are ranked according to their arrival times by a
first-in-first-out (FIFO) or a last-in-first-out (LIFO) protocol.

Upon arrival, each item’s value 6 is drawn independently across items from the uniform
distribution over [0, 1], and it becomes publicly known. Any agent matched with the item
receives the payoff /. When an agent leaves the market unmatched — that is, without having

obtained any item — she receives a zero payoff. In addition, an item is compatible with

2Moreover, Wang and Zhou| (2018) and |[Rosokha and Weil (2024) examine how server behavior can be
influenced by the queue configuration. Implementing dedicated queues for individual servers, as opposed to
a single shared queue, can improve service times.



an agent with probability p € (0, 1), independently across items and agents. An agent can
be offered an item only if the item is compatible with her. We assume that there is no
discounting or waiting cost to stay on the market.

At every period, once an item of value 6 enters the market, the first-ranked agent chooses
whether to accept the item or not, conditional on compatibility. If she accepts, the agent
and the item leave the market. If the item is not compatible with the first-ranked agent,
or if it is compatible but the agent rejects it, the item is offered to the second-ranked agent
(if there is any), conditional on compatibility. If the match occurs, the second-ranked agent
and the item leave the market. Otherwise, the item is discarded. In addition, at the end of
each period, if an old agent is still present and is unmatched, she leaves. Therefore, one item
and either one or two agents leave the market at each period, either because they match or
because their lifespan ends.

For simplicity, we assume that an agent indifferent between accepting and rejecting an

item always accepts it. Our analysis remains unchanged under any other tie-breaking rule.

2.2 Rational and Behavioral Equilibrium

We study stationary Markov perfect equilibria, in which agents’ strategies only depend on
their age (young or old) and their rank in the queue. Since an old agent prefers accepting
any compatible item to leaving the market unmatched, an equilibrium is fully described by
young agents’ behavior. While the rational equilibrium requires the minimum acceptable
item’s value to coincide with an agent’s continuation payoff, we also consider behavioral

equilibria, in which agents’ thresholds can differ from it.

2.2.1 First-In-First-Out

In the FIFO protocol, an old agent is always ranked first, so a young agent’s continuation
payoft from waiting is independent of her ranking upon arrival. Therefore, an equilibrium
is identified by the minimum acceptable value for any young agent, regardless of her initial
ranking.

At the beginning of each period, there are either two agents (one old and one young,

ranked first and second, respectively) or only one (young) agent on the market. Let {v!", vf, v

o Yy2yr Yyl
denote the expected payoffs of the agents in these scenarios at the beginning of a period,
before the item’s value is realized. Since the old agent is ranked first and accepts any com-

patible item, his expected payoff is simply vl = L.



Suppose that a young agent uses a threshold strategy 0 e [0,1]. If a young agent enters

the market when no old agent is present, she is ranked first, and her expected payoff is:

~ 140 ~
vh = (=0 —=+ [1=p(1 - 0)] o (1)
In words, if the item is compatible and has an acceptable type, which occurs with probability
p(1— é), the agent matches immediately and obtains an expected payoff of #. Otherwise,
the young agent stays on the market with continuation payoff vZ".
If the young agent is ranked second because an old agent is present, the young agent’s

expected payoff is:
vyo = (1= p)vg, + pug (2)

If the item is incompatible with the old agent, it is offered to the young agent, yielding 1)51.
If the item is compatible with the old agent, who is willing to accept any item, then the
young agent remains unmatched, with a continuation payoff of vZ".
We denote the rational Markov perfect equilibrium threshold and expected payoffs under
FIFO by (§F,65,652,651), where 8’ =7 = L,
Next, we consider a behavioral equilibrium, allowing for a young agent’s decision to differ

from the rational choice. Namely, we have

0F = avl’ = oz]—), (3)

2
where 0 < a < ]% to guarantee 0 < 6F < 1. While o = 1 corresponds to the rational
benchmark, we refer to agents with o > 1 and a < 1 as overselective and underselective under

FIFO, respectively. For any a € (0, %), we denote the unique solution of the equilibrium

conditions , , and by (éF,ﬂf,ﬁfQ,ﬁi).

2.2.2 Last-In-First-Out

In the LIFO protocol, a young agent is always ranked first. If all young agents play a
threshold strategy g e [0, 1], an old (second-ranked) agent’s expected payoff at the beginning
of the period is

> . (4)

1 0
1é=pk1—m—+w5



In particular, the old agent can obtain an item if the item is compatible with her (probability

p) and either incompatible with the young agent (probability 1 — p), yielding the expected

value %, or compatible but unacceptable to the young agent (probability pé), yielding the

expected value g.

A young agent’s expected payoff is

ok :p(1—é)17+9+ [1—p<1—é)] oL, (5)

<

Specifically, since the young agent is ranked first, she obtains the item if it is compatible and

acceptable to her (probability p(1 — 9)), yielding the expected payoff %é. Otherwise, her
L
L.

Let (§L oL wL) be the rational Markov perfect equilibrium threshold and the expected

» Yy Yo

continuation payoffs under LIFO. It is easy to check that 7" = vl = %@M.

Again, a behavioral equilibrium allows agents to use thresholds different from their con-

continuation value is v

tinuation values. Namely, we consider
or = Buk (6)

for some $ > 0. While 8 = 1 corresponds to the rational benchmark, we refer to agents
with § > 1 and 8 < 1 as overselective and underselective under LIFO, respectively. We
denote the unique solution of the equilibrium conditions (), (&), and () by (6", vy, 0k). In

particular, after some algebraic steps, we obtain

Vi)

Bp? @)

2
p
behavioral equilibrium threshold 0 strictly increases in f3.

It is easy to verify that 0 < § < 2 guarantees 0 < 6L < 1. Moreover, observe that the

3The rational-equilibrium threshold gL = ol is a single-peaked function of p and converges to 0 as p
approaches either 0 or 1. When p is very small, agents are arbitrarily unlikely to match with the next-period
item. When p = 1, agents accept any item since they expect their successors to do the same, ruling out the
possibility of receiving the next item.



2.3 Equilibrium and Efficiency Comparisons

Next, we compare the rational equilibrium under FIFO and LIFO, and study how behavioral
patterns influence this comparison.

We start with some preliminaries. For h = F L, given a threshold 6 € (0,1) used by
all agents, we denote by Wh(é) the expected time an agent waits on the market, which
is equivalent to the probability that the agent is not matched upon her arrival. Since the
probability of matching on arrival under LIFO is 1 — W%(6) = p(1 — 0), we have

~

Wh@) =1—p(1 - 6). (8)

Under FIFO, W¥(6) has to satisfy

A

WH(B) = (L= WF (@)L —p(L =) + WF(O)[1 — (1 - p)p(1 - B)]. (9)

This is because a young agent is ranked first on arrival if and only if her immediate
predecessor is matched on arrival (which occurs with probability 1 — Wh(é)) Moreover, the
young agent stays on the market into the second period with probabilities 1 — p(1 — é) and
1—(1-ppl - é) if she is ranked first and second on arrival, respectively. Solving @ for
W¥(6), we obtain
;. A=pp —Aé)_

1—p*(1-90)

W (0) = (10)

We measure the efficiency of a queuing protocol using its average match value. More
formally, given a threshold g (0,1) used by all agents, the allocation efficiency of protocol
h = F, L is given by

-, (1)

Eh(é) _ PWh(é)
2
where W"(0) is determined by (8) for LIFO and by for FIFO[] The first term of
represents the scenario in which an old agent is present on the market and is compatible
with an item (with probability pW"(#)). Then, the item is matched to some agent for sure,
yielding an expected efficiency gain of % Otherwise, only a young agent can obtain the

item, conditional on the item being both compatible and acceptable to her with probability

4 Alternatively, the same allocation efficiency can be derived from the agents’ ex-ante expected payoffs:
given 6 € (0,1), we have E*(#) = v under LIFO, and E¥ (9) = (1 — WF¥(0))vf, + W (0)v[, under FIFO.



~

p(1 — ). Then, the expected efficiency gain is %é, resulting in the second term of .

2.3.1 Allocation Efficiency in the Rational Equilibrium

Setting @« = [ = 1, we now compare the efficiency in the rational equilibrium with the
socially optimal (i.e., efficiency maximizing) stationary mechanisms under FIFO and LIFOH

Our first result describes an optimal mechanism.

Proposition 1 (Socially Optimal Protocol). 1. A socially optimal stationary alloca-

tion mechanism is a FIFO protocol with

—(1 = p? /1 — 2p2 3
HF—opt: ( p)+ p +p . (12)

p? ’

2. We have 0 < §F—ort < g" .

To see why Part (1) of [Proposition 1| holds, note that a social planner prefers to match

an item with an old agent rather than a young agent subject to compatibility. This is
because, while the surplus of these two matches is the same, the young agent could still
realize some positive surplus by staying on the market through the next period. Since the
planner prioritizes old agents (i.e., uses FIFO), an optimal mechanism is identified by the
threshold §F'~°P! that maximizes the allocation efficiency under FIFO, resulting in .

To see the intuition of Part (2) of , suppose a young agent under FIFO
is offered an item of value gF, and is therefore indifferent between accepting or rejecting
it. Rejection strictly increases the probability of the next agent remaining unmatched,
since, conditional on compatibility with both agents, the next item will not be offered to
her. Therefore, a social planner strictly prefers that match to occur, implying the rational
threshold 0" being strictly above the optimal one #*~°P*—that is, rational agents under
FIFO are too selective compared to the social optimum.

While [Proposition 1| guarantees that a social planner prefers a FIFO protocol to a LIFO

one in our setting, the next result identifies the most efficient threshold under LIFO.

Proposition 2 (Socially Optimal LIFO). The optimal threshold 6X=°P* under LIFO is
such that 04—t > §" .

5A stationary mechanism determines an item’s allocation only based on the item’s value and the presence
of an old agent on the market in that period.
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To understand , suppose a young agent is offered an item of value under

LIFO, and is therefore indifferent between accepting or rejecting it. If an old agent is present
and the item is compatible with her, then by allocating the item to the old agent, she leaves
the market matched rather than unmatched, generating a strictly positive surplus. Moreover,
the continued presence of the young agent in the next period generates no externalities on
future agents, as the agent will be ranked second and, therefore, may obtain the next item
only when the item would be wasted otherwise. Thus, a social planner strictly prefers the
young agent to reject, implying that the equilibrium threshold " is below the optimal one
gL—ort je. rational agents under LIFO are too accommodating compared to the social
optimum.

The next result compares the rational equilibrium under FIFO and LIFO, and their

respective allocation efficiencies.
Proposition 3 (Efficiency Comparison under Rationality). In the rational equilibrium,
1. Agents are more selective under FIFO than under LIFO-that is, 0" < 5F;

2. The expected time on the market under FIFO is longer than under LIFO-that is,
WE@E") > WHE);

3. The allocation efficiency is higher under FIFO than under LIFO-that is, E’F@F) >
EL(0").

Part (1) of [Proposition 3| holds because young agents’ positions deteriorate more under
LIFO than under FIFO, making them relatively less selective. Therefore, on average, fewer

old agents are present on the market under LIFO, as highlighted in Part (2). Part (3) of
Proposition 3|shows that, the FIFO rational equilibrium is more efficient than the LIFO one
in our setting, as illustrated in [Figure 1}

To gain intuition about Part (3), it is useful to compare the expected payoffs of a young
agent arriving as ranked first under FIFO, as ranked second under FIFO, and under LIFO
(where she is always ranked first), respectively, conditional on all agents using the same
strateqy 6 c (0,1). The expected payoff of a young agent who is ranked first under FIFO is
vfjl, as described in .

Suppose now that the young agent is ranked second in FIFO (obtaining v52) rather than
first. The lower rank affects the agent’s payoff only if the arriving item is compatible with and

acceptable to the agent, and also compatible with the (first-ranked) old agent. This event

10
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Figure 1: Rational Equilibrium Allocation Efficiency under FIFO and LIFO

occurs with probability p?(1 — é), and in this case, the young agent receives a continuation

value of &, rather than %é, implying

(146 p
vl — vl =p*(1 - 6) (———).

Finally, consider a young agent under LIFO, rather than ranked first under FIFO. Since
the agent is ranked first in both protocols, the change in protocol affects her payoff only
if the arriving item is either incompatible or unacceptable, which occurs with probability
1—-p(1 - é) Conditional on this scenario, her payoff changes only if next period’s item is
compatible with both her and the next agent, which occurs with probability p?. Then, our
agent, who is now old, surely obtains the next item under FIFO (with expected value %),
while under LIFO she obtains it only if the item’s value is unacceptable to the next agent

(probability é), with expected value g. Hence, we obtain

: 1 .0
vl — vl = [1—p(1—9)}p2 (5—9§>

It is easy to verify that v}, —v}; < o)} —vl, which implies v}, > v/~that is, conditional on
all agents using the same threshold 6, being second upon arrival under FIFO is preferable to
entering a market under LIFO. In particular, this holds for h=8". Furthermore, if a young
second-ranked agent under FIFO chooses the rational threshold 9" = £ instead of gL, her
52 becomes even higher. Finally, the expected payoff of an arriving agent

under FIFO, which is a weighted average of the values of being ranked first or second upon

expected payoff v

11



arrival, must be even higher than the expected payoff conditional on being ranked second,
yielding Part (3) of [Proposition 3|

While we focus on p € (0,1), FIFO and LIFO are equally efficient for both p = 0
and p = 1. If p = 0, the efficiency is obviously zero under both protocols. If p = 1,
g" = 0 is the unique equilibrium under LIFO, so the equilibrium efficiency under LIFO is
EL(0) = H Under FIFO, it is easy to check that 9 = 1, which guarantees E¥ (1) = 1 as
well. The equal efficiency of the two protocols at p = 1 is also intuitive. Under LIFO, a zero
equilibrium threshold ensures that each item is always matched with the first-ranked (young)
agent. Under FIFO, a strictly positive equilibrium threshold ensures that the steady-state
probability of being matched upon arrival is zero, so that each item is always matched with
the first-ranked (old) agent. Therefore, the allocation efficiency of both protocols must equal

the average item value, which is 3.

2.3.2 Allocation Efficiency in the Behavioral Equilibrium

Next, we describe how agents’ behavioral patterns affect the previous results. A meaningful
comparison between FIFO and LIFO requires some minimal rationality of agents’ behavior
in queues. In particular, we refer to an agent as “minimally queuing-rational” (MQ-rational)
if her strategies 07, 61 satisfy (i) 0%, 0" < 1/2, and (ii) 67 < 6. In words, requirement (i)
of MQ-rationality is that an agent always accepts any item of value greater than 2 5, which
coincides with the agent’s expected payoff in the best-case scenario of the next period’s item
being both compatible and allocated to the agent for sure. Requirement (ii) amounts to
an agent understanding that her future position deteriorates more under LIFO than under
FIFO. E| It is easy to verify that Parts (1) and (2) of [Proposition 3| m continue to hold in a
behavioral equilibrium as long as agents are MQ-ratlonal.

The goal of our next result is to connect our experimental findings with their welfare

implications.
Proposition 4 (Overselection under LIFO and Efficiency). We have

1. EL(9-%) < EF(@"), and

6For uniqueness, note that if agents played a threshold strategy 6 > 0, implies vl = %2. By @, we
have 6 = %2. For any 3 € (0,2), and in particular for 8 = 1, this yields 6 > 1, which is not feasible.
"In equilibrium, MQ-rationality translates into conditions on « and B. Specifically, a < % and, if all

agents are MQ-rational, then 8 < 3, where 3 is the unique positive solution of %:3(17’) .

12



2. If agents are MQ-rational, the allocation efficiency of the LIFO equilibrium is a single-
peaked function of 3, and is mazimized at some B=°P* > 1. Hence, the efficiency gap
between the FIFO rational equilibrium (o = 1) and the LIFO behavioral equilibrium
decreases for 3 € [1, BLPY) and increases for B € (BL_"pt,B]

Part (1) guarantees that the efficiency under LIFO is lower than the rational equilibrium
efficiency of FIFO even at the socially optimal threshold. The intuition is almost identical
to Part (3) of |Proposition 3| substituting " with F—ot,

As it turns out, in we show that experimental subjects behave approximately
rationally under FIFO, but display an over-selective bias under LIFO, while still satisfying

MQ-rationality. Hence, Part (2) of [Proposition 4| focuses on the case of @ = 1 and a

range of § > 1 satisfying MQ-rationality. In particular, Part (2) of [Proposition 4| follows
from : efficiency is maximized at a threshold higher than gL, associated with

pr—ort > 1.

|[Proposition 4] summarizes the efficiency implication of agents departing from rational

behavior under LIFO, while behaving rationally under FIFO. In particular, if the agents
are moderately overselective under LIFO (1 < 8 < BL=°P!), such departure is efficiency-
improving, and it reduces the efficiency gap between LIFO and FIFO. However, if they
become extremely overselective (3 > 7°P!)  the efficiency gap starts to grow again and can
ultimately surpass the one associated with rational equilibrium.

For p = 0.5, [Figure 4] shows the efficiency gap between FIFO under rational behavior

F

(6" = 0.25, corresponding to a = 1), LIFO under rational behavior @L = 0.127, corre-

sponding to 8 = 1), and LIFO at the social optimum (#*~°P* = (.184, corresponding to
BE=ort = 1.42), obtained from [Proposition 2| Note that Part (1) of [Proposition 4] ensures
that the peak of the allocation efficiency under LIFO is still below the allocation efficiency
achieved in the FIFO rational equilibrium.

As mentioned above, |Proposition 4|constitutes the underpinning of the efficiency implications

of our experimental analysis, which we present in the next sections.

8Since the allocation efficiencies EX and E¥" are continuous in the agents’ threshold choices,
still holds under moderate deviations from MQ-rationality. While some subjects in our experiment violate
MQ-rationality, such deviations are not significant.

13



3 Experimental Design

3.1 Reduced-Form Games

To replicate an infinite-horizon overlapping generation game in an experimental setting, we
follow the approach of Lim et al. (1986)), Aliprantis and Plott (1992), and Marimon and
Sunder| (1993). Specifically, we consider reduced-form static setups, which are strategically
equivalent to the FIFO and LIFO environments presented in

Reduced-Form FIFO A single player selects a minimum acceptable value 0 (0,1).
Then, an item with value 6, ~ UJ0, 1] arrives and is compatible with the player with proba-
bility p € (0,1). If the item is compatible and 6; > 6, the player receives the payoff 6;, and
the process ends. Otherwise, a second item arrives with value 0 ~ UJ[0, 1] and is compat-
ible with probability p € (0,1). If the second item is compatible, the player’s payoff is 0.
Otherwise, the player obtains zero payoff.

This decision problem is equivalent to the FIFO protocol studied in [Section 2.2.1] In
particular, young agents in the FIFO protocol and the players of the reduced-form FIFO
game choose a threshold to decide whether to accept an offered item. However, the events
unfolding upon rejection — whether they will be offered another item and the value realization
of that item — and their associated probabilities are exactly the same in the FIFO protocol
and in the reduced-form FIFO one, making the two settings strategically equivalent. The

. . 2\ . nF __
strategy for a player with a behavioral parameter a € (0, 2) is 67 = a¥.

Reduced-Form LIFO Players A and B simultaneously select their minimum acceptable
values 0, € (0,1) and 0p € (0,1), respectively. Then, each player is equally likely to be
chosen as an ‘active’ player. The non-active player obtains zero payoftf.

Suppose that player i = A, B is chosen to be active. An item with value 6; ~ UJ0, 1]
arrives and is compatible with player ¢ with probability p € (0, 1). If the item is compatible
with player i and 6, > 6;, player  obtains #; and the game ends. Otherwise, a second item
arrives with a value 6, ~ UJ[0, 1], compatible with each player with probability p € (0, 1),

with compatibility independent between players. Then, one of these cases follows:

1. If 6, > A_; and the second item is not compatible with player —i but is compatible
with player ¢ (with probability p(1 — p)), player ¢ obtains 6.
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2. If 65 < 6_; and the second item is compatible with player i with probability p, then

player ¢ obtains 65.
3. Otherwise, player i obtains zero payoff.

This setup is strategically equivalent to the LIFO protocol studied in [Section 2.2.2

In particular, young agents in the LIFO protocol and the players of the reduced-form
LIFO game choose a threshold to decide whether to accept an offered item. However, note
that the events unfolding upon rejection and their associated probabilities depend on the
next arriving agent’s decision in the LIFO protocol and on the opponent’s decision in the
reduced-form LIFO game in exactly the same way, making the two settings strategically
equivalent.

Thus, if the players of this reduced-form game have a behavioral parameter 5 € (0, 1—2)),

there exists a unique behavioral equilibrium where both choose éL, described in .

3.2 Experiment Description

The experiment was carried out at Washington University in Saint Louis, with 60 under-
graduate students as participants. Each session comprises 30 rounds of the FIFO game and
30 rounds of the LIFO game. The subjects accumulated tokens during the 60 rounds and
were paid in cash at the end with a conversion rate of $1 for every 650 tokens. The aver-
age payment was $24.6, in addition to a $5 show-up fee. Here, we will briefly describe the
experiment, while detailed instructions can be found in the Online Appendix.

Subjects are randomly paired at the start of each round in both FIFO and LIFOH Each
item is represented by a jar that contains a random number of tokens between 1 and 1000,
representing the jar’s value.m Each subject selects an integer between 1 and 1000 as the
minimum acceptable jar value. Then, one subject in each pair is randomly chosen as ‘active.

In the FIFO treatment, a computer generates the first jar with a random value. If the
value meets or exceeds the active subject’s threshold, that subject obtains the jar with
probability 50%, concluding the round.E| Otherwise, a second jar is generated, and the
active subject has a 50% chance of obtaining the second jar regardless of its value. If she

does not obtain it, she receives zero, and the round ends.

9The pairing is strategically irrelevant under FIFO but ensures a similar structure between treatments.

10We set the minimal jar value at 1 instead of 0 to make each value’s probability ﬁ, which is simpler
for the subjects to grasp. In what follows, we round each jar’s average value to 500.

1We chose p = 0.5 to be able to explain random compatibility to the experiment subjects using coin flips.
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In the LIFO treatment, a computer generates the first jar with a random value. If the
value meets or exceeds the active subject’s threshold, the active subject obtains the jar with
a 50% chance, concluding the round. Otherwise, a second jar is generated. If the value of
the second jar meets or exceeds the inactive subject’s threshold, the active subject has a
25% chance of obtaining the jar. If the value of the second jar is strictly below the threshold
of the inactive subject, the active subject has a 50% chance of obtaining it. If the active

subject fails to obtain the second jar, she receives zero, ending the round.

4 Experimental Results

As a first step, we assess whether the observed choices satisfy at least MQ-rationality (?7). In
the experimental setting, MQ-rationality requires a subject’s threshold choices under LIFO
to be lower than under FIFO, and both to be at most 500.

Result 1. Most subjects either satisfy or do not deviate significantly from MQ-rationality.

Table 1| shows the threshold choices in each treatment. Since subjects may gradually
learn, we present results from three datasets: all 30 rounds, the last 15 rounds, and the last
5 rounds. For each dataset, we calculate the average threshold chosen by each subject under

FIFO and LIFO, respectively, and present the summary statistics.

Rational Equilibrium Experimental Data
Thresholds All rounds Last 15 Last b
FIFO 250 270.6 258.5 266.8
(23.1) (26.8)  (28.2)
LIFO 127 218.3 197.8 193.5
(22.9) (24.7)  (27.1)

Table 1: Summary Statistics of the Subjects’ Average Choices

The last three columns of [Table 1| summarize the experimental data. The second, third,
and fourth column of the table show the mean and standard deviation (in parentheses) of the
average thresholds for the 60 subjects across all 30, last 15, and last 5 rounds, respectively.

The aggregate data are consistent with MQ-rationality:.
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We also observe that individual subjects tend to be MQ-rational. show each
subject’s average choices (each dot representing one subject), averaged across all 30, last 15,
or last 5 rounds under LIFO on the z-axis, and FIFO on the y-axis. MQ-rationality requires
the FIFO threshold choices to be below 500 (i.e., below the red horizontal line), and the
LIFO choices to be not higher than the FIFO ones (i.e., on the left side of the blue 45°
line). Hence, the dots in the bottom-left triangle of each plot represent subjects that satisfy

MQ-rationality on average.

All rounds

Last 15 rounds Last 5 rounds

Figure 2: Individual subjects’ average choices under LIFO (on the z-axis) and FIFO (on the
y-axis).

Specifically, the subjects’ threshold choices do not deviate enough from the bottom-left
triangle to reject the MQ-rationality hypothesis. Let {6F, 02159, be the observed threshold
choices under FIFO and LIFO. Assuming that the chosen thresholds are independent samples
of the equilibrium thresholds (6%, 0%), the 95% confidence interval for the FIFO threshold
07 is [224.4, 316.8], [204.8, 312.2], or [210.4, 323.1] for the data from all 30, last 15, and last
5 rounds, respectively. Similarly, the 95% confidence interval for the threshold difference,
OF — 0F, is [15.3, 89.3], [19.2, 102.2], or [26.2, 120.3] for the data from all 30, last 15, and
last 5 rounds. One-sided tests reject the hypotheses 6F > 500 and 6% > §F.

Next, we compare the subjects’ choices to the rational equilibria. As shown in the first
column of full rationality (a = 8 = 1) entails the equilibrium threshold under FIFO

and LIFO of §' = 250 and §~ = 127, respectively.

Result 2. (i) The subjects’ behavior is close to rational in FIFO, but overselective in LIFO;
(i) The observed difference between the FIFO and LIFO thresholds is smaller than in the

rational equilibrium.

Figure 3| shows the evolution of the subjects’ threshold choices over all rounds. For each
round of each treatment, the figure shows the mean of the subjects’ choices (solid lines) and
the 95% confidence interval (shaded areas).
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Figure 3: Rational vs. Observed Choices under FIFO [Panel (a)] and LIFO [Panel (b)]

Panel (a) depicts the choices under FIFO, and the rational threshold of 250. The thresh-
old choices are generally aligned with the rational benchmark, starting higher in the early
rounds but converging to 250 within 5-10 rounds. Panel (b) shows the choices under LIFO,
and the rational equilibrium threshold of 127. Although the mean of the chosen thresh-
olds tend to decrease slightly over time, they remain significantly higher than the rational
equilibrium of 127. Therefore, from Results 1 and 2, we conclude that the observed differ-
ence between the FIFO and LIFO thresholds is positive, but smaller than what the rational
equilibrium predicts.

Lastly, we estimate the behavioral parameters o and 8 using the observed threshold

choices.

Result 3. (i) The estimated behavioral parameters from the threshold choices from all, last
15, and last 5 rounds, are & € [1.03,1.08] and ( € [1.49,1.67]. (ii) Such estimates imply a
reduction in the allocation efficiency gap between the FIFO and LIFO protocols compared to

the rational equilibrium.

The estimate of the behavioral parameter & is derived from of = af with p = % Here,
or represents the threshold choices 270.6, 258.5, or 266.8 in [Table 1| averaged across all,

the last 15, or the last 5 rounds, respectively. Similarly, the estimate of the parameter B is

obtained from and [Table 1|

The behavioral patterns described in [Result 3] draw the efficiency implications of our

experimental results. Recall from [Proposition 2| that 7=P% > " According to Part (2) of
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[Proposition 4] the overselective behavior under LIFO has the potential to enhance efficiency,
if it is not too severe.

Hence, the observed thresholds under LIFO in are excessively high, leading to
a decrease in the efficiency relative to the maximal one. However, even the highest mean
threshold 6% = 0.218 observed from all 30 rounds satisfies EL(AL) > EL (@L). The allocation
efficiency under the observed behavior is lower than the optimal level but still higher than
what rationality would entail. Therefore, the behavioral pattern we document reduces the
efficiency gap between the FIFO and LIFO protocols with respect to the rational equilibrium
and helps mitigate the efficiency loss caused by the LIFO protocol.

In , for p = 0.5, we show the effect of the observed behavior in LIFO (éL = 0.218,
corresponding to B = 1.67), obtained in on the allocation efficiency gap between
FIFO under rational behavior (gF = (.25, corresponding to a = 1) and LIFO.

Allocation Efficiency FIFO (a=1)

0.335

0.330 -

0.325 -

0.320 -
1

0.315 : LIFO
1

0.310 -

0.305 -

0.300 ! !
0.0 0.5 1.0 1.5 2.0

Figure 4: Allocation Efficiency of FIFO under Rational Equilibrium (o = 1) and LIFO under
Rational Equilibrium (8 = 1), Optimal LIFO (BX~P* = 1.42), and LIFO under Observed
Behavior in Experiment (§ = 1.67), for p = 0.5

As already mentioned above, it is worth noting that, while agents’ overselection behavior
under LIFO is the key takeaway from our experiment, its welfare implication is a consequence
of this behavior in the context of our model. The welfare impact of overselection under
LIFO varies across models, including cases where the welfare ranking between FIFO and
LIFO may be reversed. For example, consider a setting similar to ours, but where agents
must pay a positive waiting cost if they enter old age unmatched. In this setting, a LIFO

protocol generates an efficiency benefit relative to FIFO, since equilibrium waits are longer
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under FIFO.If waiting costs are high enough, Part (3) of reverses, and LIFO
becomes more efficient than FIFO under rational behavior. However, since |Proposition 2|still

holds, a moderate overselective bias under LIFO would continue to yield an efficiency gain.
Then, the efficiency gap between the two protocols would increase, not decrease, relative to

the rational benchmark.

5 Discussion

We explore potential explanations for the overselective behavior observed under the LIFO
treatment under LIFO. The overselective bias conflicts with standard economic theories. If
our subjects experienced time discounting, waiting costs, or risk aversion — all omitted in our
model — these considerations would have implied & < 1 and B < 1, the opposite of what we
observe in the experimental data. Moreover, subjects’ continuation values under LIFO are
more complex to compute than under FIFO, as they depend on one’s beliefs about another
agent’s choices. Therefore, aversion to complex or ambiguous consequences from waiting
—also omitted in our model— would have implied a more cautious behavior under LIFO than

under FIFO, or B < @, again in contradiction with our data.

5.1 Human-to-Robot LIFO Treatment

While in the FIFO protocol there is no strategic interaction across agents, a subject’s de-
cision under LIFO depends on the opponent’s threshold choice. Specifically, the analysis
in implies that each agent’s continuation value vl increases as other agents
become more selective, indicating strategic complementarity across agents. More formally,
suppose that an agent is rational, when all others are overselective (8 > 1) and play the
behavioral equilibrium strategy 6L. Hence, the rational agent’s optimal threshold, which
coincides with her expected continuation payoff, is 7% > v = 9", The opposite holds when
all other agents are underselective (8 < 1).

Consequently, if experimental subjects update their beliefs using the high thresholds seen
in earlier rounds, they may refrain from adjusting their choices downward, thereby hindering
convergence to the rational equilibrium.

To address this effect, we conducted an additional LIFO experiment, in which 47 subjects
played the reduced-form LIFO game against robots with known strategies. In this additional

treatment, a subject selects an integer between 1 and 1000 for each of 7 possible robot
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choices Z € {1,100, 200, 300, 400, 500, 1000}. For each robot’s choice and subject’s response,
we apply the LIFO treatment described in The rational best response to a
robot’s choice can be derived by replacing 6 with z := &5 €10,1] in to obtain 0(z) =
+[p(1 — p) + p*2?], and multiplying it by 1000. The human-to-robot LIFO treatment was
repeated for 5 rounds. shows that the subjects’ average choices still consistently

exceeded the rational best responses to the robot’s choices.
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Figure 5: Subjects’ Choices in the Human-to-Robot LIFO Treatment. Each gray dot rep-
resents a subject’s average threshold choice across 5 rounds. Red diamonds and segments
represent observed averages and 25-to-75 percentile ranges, respectively. The blue curve is
the rational best response.

We estimate a subject’s behavioral parameter B using @, as the ratio of their thresh-
old choice 6 to the rational best response 0(z) for each robot’s choice z. After averaging
this estimation across all rounds and subjects, the resulting estimate B falls within the
range [1.31,1.56], still exceeding the rationality benchmark of § = 1, similarly to the range
[1.49,1.67] found in of the human-to-human LIFO treatmentm To summarize,
without strategic complementarities in the human-to-robot LIFO treatment, subjects still ex-
hibit an overselective bias similar to the one found in the original LIFO treatment. The rest
of this section explores to what extent some well-known behavioral frameworks can explain

this residual bias.

128pecifically, the estimated values of 3 are 1.38, 1.43, 1.55, 1.47, 1.49, 1.56, or 1.31, corresponding to
subjects’ responses to robot’s choices of 1, 100, 200, 300, 400, 500, or 1000, respectively.
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5.2 Alternative Behavioral Theories

In this section, we employ well-known behavioral models to examine how well they fit the

residual overselective bias observed in the human-to-robot LIFO experiment [F]

5.2.1 Quantal Response Equilibrium

In the Quantal Response Equilibrium (QRE) framework, introduced by [McKelvey and Pal-
frey (1995), players do not necessarily choose an optimal action; instead, they choose ac-
tions yielding higher expected payoffs with greater probabilities. In the absence of strategic
interaction as in the human-to-robot LIFO treatment, QRE simplifies to a logit model.

Specifically, for each robot’s choice z, a threshold 0~Q is selected with probability

exp[AU (0g; 2)]
S ot exp[AQU(6; 2)]

Pr(fg|z, Aq) =

where U(0; z) is the subject’s expected payoff for a given choice 6, and Ay > 0 measures the
decision-making precision. As A\ diverges, the choice converges to the rational best response
to z, and when Ag = 0, the choice is uniformly random.

The maximum likelihood estimate of the parameter \g is 5\Q = 9.59 Using the esti-
mated S\Q, we compute the expected value of threshold choices in response to any robot’s
choice z and present as black dashed line in [Figure 6l The QRE predictions are generally

higher than the averages of the choices made by the subjects as observed.

5.2.2 Anchoring on the Mean, Mimicking, and Unified Model

Next, we consider two additional well-known behavioral frameworks, and then we combine
them with the QRE model in a unified analysis.
First, in the Anchoring on the Mean model, subjects choose a threshold by departing

from the mean value of a jar and adjusting toward the rational best response Therefore,

13In addition to the ones considered in this section, other behavioral models can potentially generate
excessively optimistic expectations in the LIFO game. However, we show in the Online Appendix that they
fail to explain our results quantitatively.

14Since the human-to-robot LIFO treatment had 47 subjects, each making choices over 5 rounds in response
to 7 choices by the robot, our data set includes N = 47 x 5 x 7 observations, {zi,éi}ij\il where 0; is a
threshold chosen by a subject as a response to a robot’s choice z;. Hence, the log-likelihood function is
logL(\g) = Zf\il logPr(0;]zi, Aq).

15 Anchoring is a well-documented bias in the behavioral management literature. See for example
Schweitzer and Cachon| (2000); Bostian et al.| (2008); |[Katok and Wu|(2009); Bolton et al.| (2012); Becker-Peth
et al.| (2013)); |[Moritz et al.| (2013).
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Figure 6: QRE Model Results. The black dashed line corresponds to the choices predicted
by the QRE model. A gray dot represents a subject’s average threshold choice across 5
rounds. Red diamonds and segments represent observed averages and 25-to-75 percentile
ranges, respectively. The blue curve is the rational best response.

we have

04(2) = Aa x 0.5+ (1 —Aa) x 0(2) + ¢,

where 0(z) represents the rational best response to z, and € ~ N(0,0?).
Second, when a subject is uncertain about how to respond to a robot’s choice, mimicking
the robot’s choice and adjusting toward the rational best response could also be appealing.

Similarly to before, this pattern can be formalized as

Or(2) = A X 2+ (1= \pp) x 0(2) +e,

where € ~ N(0,0?).
Finally, we consider a unified framework combining Quantal Response Equilibrium (Q),

Anchoring (A), and Mimicking (M), in the following weighted average:

Pr(f;z) = Z G P (6; 2, A\n),
me{Q,A,M}
with ¢, > 0 for m = @, A, M, and qg + ga + g = 1. For each model, we discretize the
threshold prediction[I]

16Specifically, we partition the interval [1,1000] into 40 sub-intervals [1,25], [26,50], etc. and assign the
probability of a random threshold falling into each sub-interval to its midpoint.

23



We report the maximum likelihood estimates of up to three weight parameters (qg, ga,
and gy ), up to three behavioral parameters (Ag A4, and Ay/), and o in . QRE explains
most of the threshold choices, because the estimated weight of QRE in the unified model is
qo = 0.88. However, the QRE-only model is statistically rejected by the likelihood-ratio test

and must be combined with mimicking to explain the subjects’ choices.m

QRE QRE+Anchor QRE+Mimic QRE+Anchor+Mimic

qQ 1.00 0.89 0.88

qa 0.00 0.01

am 0.11 0.11

AQ 9.59 9.59 10.02 9.89

Ad (0.04) (0.00)

AM 0.97 0.97

o (17.16) 1.34 0.21

LogLikelihood -5741 -5740 -5554 -5553
LR testagainst |

p <0.001 p<0.001 p = 0.094 -
full unified model

Table 2: Estimation of the Behavioral Models. Estimates in parentheses are unreliable since
the estimated ¢4 is close to 0.

6 Conclusion

We study a one-sided dynamic matching setup, where agents and items arrive sequentially,
and there are no wait costs. The items’ types are random, and items are wasted if they
are not matched with an agent upon arrival. Agents are offered items according to either
FIFO or LIFO priority protocol, subject to compatibility, and they leave the market after
two periods if still unmatched. We experimentally study the subjects’ implementation of
threshold strategies under the two priority protocols. While agents behave approximately
rationally under FIFO, they adopt thresholds significantly higher than the rational ones
under LIFO. In the context of our model, the magnitude of this overselective bias reduces the
efficiency gap between FIFO and LIFO. After experimentally demonstrating that this bias

persists in an environment where strategic effects are absent, we use well-known behavioral

1"The degree of freedom for the LR test of QRE+Anchor or QRE+Mimic against the unified model equals
1, as we only restrict ga; = 0 or g4 = 0, respectively. On the other hand, the degree of freedom for the LR
test of QRE-only is 2.
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frameworks to explain the overselective bias under LIFO. Further research could be beneficial
to understand the causes of this departure from rationality, as well as the extent to which the

overselective bias we uncovered under LIFO persists in alternative queuing environments.
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7 Appendix

Proof of [Proposition 1| For Part (1), we substitute W"(6) with in (L1). It is easy
to check that the threshold in is optimal. Part (2) follows from easy algebraic steps,

using and § = L. [ |

Proof of [Proposition 2| From (8) and (1)), we obtain

o _ Lm0 4P = /(L —p+p*)’ = 3p°(1—p)

Recall that §° = 1=V1-p'0-p) W. Let x = p? and y = p(1 —p). Then, 9" < oLt if and only if

T/ ey Gt ) VA Gl ) ek

3
= (24y) <3V/1—ay— /(1 —-y)? -3y
= V(1 —ay) (1 —y)? = 3ay) < (1 —y) — 2ay
= —(1-y)? =301 —-ay) <4zy —4(1 -y

— (1—-y)(B3+y) <3+ uxy,

which always holds since (1 —y)(3+y) =3 — 2y —y? < 3. [

Proof of [Proposition 3| Part (1) For h = F, L, we have 7" = o, Since v} = £, and v%

is given by (), it is easy to check that v5 > v for any 0 e (0,1).
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Part (2) By comparing (8)) for LIFO and for FIFO, we observe that WL(0) < WF(0)
for any 6 € (0,1). Moreover, WX(8) = 1 — p(1 — 6) strictly increases in 6. Thus, Part (2)
follows from Part (1), as 6" <a".

Part (3) First, we show that, for any 6 € (0, 1), v;;(é) > vj(é), the expected utility of
an agent who arrives into a FIFO market when an old agent is present is higher than the

expected utility of an agent who arrives into a LIFO market.
From , we have

vip(0) = (1 —p) [p(l - 9)1T+0 (1—=p(1— 9))% +p§-
From and ,
vy (0) = p(1 — 9)1% + [1 —p(l— 5)] [(1 —p)%9 + (pé)gl
Then,
() = () = p(1 — ) [”2 O pa g 2D
:p(1—é)p2_p2§1 —%) (14)
Finally,

") = vk (0") < v (@") < v5(8") < EF(0

).

The equality holds because an equal number of agents and items arrive over time, and the

type of each matched item is equal to the utility of the associated agent. The first inequality

F
y2

g = £, and va@F) must be lower than the average utility across all agents under FIFO

follows from (|14)). The subsequent inequalities hold because v (é) increases as 0 approaches

who can be ranked first or second upon arrival. [ |
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Proof of [Proposition 4| We can obtain E*(f) = vé(é) from and as a cubic

function of . Then,

dEX(0)

= [—2é+p(1—p+pé2)+(1—p(1—é))2pé].

:=h(f)

N3

~

Note that h(f) has a positive quadratic coefficient, that h(0) = p(1 — p) > 0, and that
h (%) =p (2 — %p) —1 < 0. Consequently, E* (é) is a single-peaked function over the interval
0 € [0, 1], which we focus on by MQ-rationality.

Part (1) Since h(2) = p*(22 — 1) < 0, we have 9" = L > gL=ort Then,

EEL(02) = ok (02) < uhy (95 ") < ol (@) < BT (8").

The equality and inequalities hold similarly to the last part of the proof of [Proposition 3|
The equality holds because an equal number of agents and items arrive over time, and the

type of each matched item is equal to the utility of the associated agent. The first inequality

F
y2
an agent’s optimal threshold g = £, and the expected utility of an agent ranked second
upon arrival in FIFO must be lower than the expected utility across all agents under FIFO

follows from (|14)). The subsequent inequalities hold because v (é) increases as 0 approaches

who can be ranked either first or second upon arrival.
Part (2) Given that the behavioral equilibrium L strictly increases in 3 by . EL(é) is

—L
a single-peaked function of 3. Furthermore, #*~°P* > 0" from so the maximal

efficiency is achieved at some 3Lt > 1. |
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