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Abstract

In this Supplementary Appendix, we make some additional theoretical remarks and
explore to what extent well-known behavioral theories can explain our experimental
results. We also describe the experiment in more detail, including the instructions for
participants.

1 Additional Theoretical Analysis

Efficiency Comparison for p = 0 and p = 1. As seen in Part 3 of Proposition 3 in the
paper, in our setting, which assumes p ∈ (0, 1), the equilibrium allocation efficiency under
rational behavior is strictly higher in FIFO than in LIFO. In the paper, we explain how this
result is based on the fact that, for any fixed threshold θ̂ ∈ (0, 1) used under both protocols,
we have vFy1 > vFy2 > vLy (see the discussion following Proposition 3). Figure 1 illustrates such
a comparison for any p ∈ [0, 1].
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Figure 1: Rational Equilibrium Allocation Efficiency under FIFO and LIFO

In particular, while in the paper we focus on p ∈ (0, 1), note that FIFO and LIFO are
equally efficient for both p = 0 and p = 1. If p = 0, the efficiency is obviously zero under both
protocols. If p = 1, θL = 0 is the unique equilibrium under LIFO.1 Hence, the equilibrium
efficiency under LIFO is EL(0) = 1

2
. Under FIFO, it is easy to check that θ
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2
as well. Note that even for p = 1, under any θ̂ > 0 applied to both

protocols, we would have vFy1 > vFy2 > vLy . In other words, the equal efficiency of the two
protocols at p = 1 is a direct consequence of the fact that, if p = 1, we have θ

L
= 0. More

specifically, θL = 0 guarantees that, regardless of the protocol, each item is always matched
with the first-ranked agent and, therefore, never offered to the second-ranked agent: Under
LIFO, the first-ranked, young agent plays a zero-threshold strategy and, therefore, is always
matched with the upcoming item. Under FIFO, since the steady-state probability of being
matched upon arrival is zero, the first-ranked agent is always old, and therefore accepts any
item. Therefore, the allocation efficiency of the two protocols must be the same, and equal
to the average item value, which is 1/2.

Allocation Efficiency Gap between FIFO and LIFO. In Proposition 3 in the paper,
we describe how the allocation efficiency gap between FIFO with α = 1 and LIFO with β > 1

behaves as β grows. In particular, we show that the welfare gap decreases first over [1, β∗],
and increases again over (β∗, β]. Figure 2 graphically illustrates Part (2) of Proposition 4 in
the paper, depicting the efficiency gap between FIFO under rational behavior (α = 1), and
LIFO under rational behavior (i.e., β = 1), LIFO at the social optimum (i.e., β∗ = 1.42,

1For uniqueness, note that if agents played a threshold strategy θ̂ > 0, (4) in the paper implies vLo = θ̂2

2 .
By (6) in the paper, we have θ̂ = βθ̂2

2 . For any β ∈ (0, 2), and in particular for β = 1, this yields θ̂ > 1,
which is not feasible.
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obtained from θL−opt in Proposition 2), and LIFO in the experimental data (i.e., β̂ = 1.67,
obtained in Result 3 in Section 4 of the paper, from the average observed threshold of
θ̂L = 0.218 from all 30 rounds). Note that the maximum β consistent with MQ-rationality
for α = 1 is β = 1.882.
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Figure 2: Allocation Efficiency Gap between FIFO under Rational Equilibrium (α = 1) and
LIFO under Rational Equilibrium (β = 1), Optimal LIFO (β∗ = 1.42), and LIFO under
Observed Behavior (β̂ = 1.67), for p = 0.5

2 Alternative Behavioral Explanations

In this section, we consider the residual overly selective bias observed in the human-to-robot
LIFO treatment described in Section 4.2 of the paper, and we employ well-known behavioral
models to examine how well they fit the experimental data.

2.1 Quantal Response Equilibrium

In the Quantal Response Equilibrium (QRE) framework, introduced by McKelvey and Pal-
frey (1995), players do not necessarily choose an optimal action; instead, they choose actions
yielding higher expected payoffs with greater probability. In the absence of strategic in-
teraction (as in the human-to-robot LIFO treatment), QRE simplifies to a logit model.
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Specifically, for each robot’s choice z, a threshold θ̃Q is selected with probability

Pr(θ̃Q|z, λQ) =
exp[λQU(θ̃Q; z)]∑1000
θ=1 exp[λQU(θ; z)]

,

where U(θ; z) is the subject’s expected payoff for a given choice θ, and λQ > 0 measures the
decision-making precision: as λQ diverges, the choice converges to the rational best response
to z, and when λQ = 0, the choice is uniformly random.

The maximum likelihood estimate of the parameter λQ is λ̂Q = 9.59.2 Using the estimated
λ̂Q, we compute the expected value of threshold choices in response to any robot’s choice z.
In Figure 3, the black dashed line represents the expected value of the thresholds predicted
by the QRE model. The QRE predictions are generally higher than the averages of the
subjects’ observed choices.
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Figure 3: QRE Model Results. The black dashed line corresponds to the choices predicted
by the QRE model. A gray dot represents a subject’s average threshold choice across 5
rounds. Red diamonds and segments represent observed averages and 25-to-75 percentile
ranges, respectively. The blue curve is the rational best response.

2Since the human-to-robot LIFO treatment had 47 subjects, each making choices over 5 rounds in response
to 7 choices by the robot, our data set includes N = 47 × 5 × 7 observations, {zi, θ̂i}Ni=1 where θ̂i is a
threshold chosen by a subject as a response to a robot’s choice zi. Hence, the log-likelihood function is
logL(λQ) =

∑N
i=1 logPr(θ̂i|zi, λQ).
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2.2 Anchoring on the Mean, Mimicking, and Unified Model

Next, we consider two additional well-known behavioral frameworks, and then we combine
them with the QRE model in a unified analysis.

First, in the Anchoring on the Mean model, subjects choose a threshold by departing
from the mean value of a jar and adjusting toward the rational best response.3 Therefore,
we have

θ̃A(z) = λA × 0.5 + (1− λA)× θ(z) + ε,

where θ(z) represents the rational best response to z, and ε ∼ N(0, σ2).

Second, when a subject is uncertain about how to respond to a robot’s choice, mimicking
the robot’s choice and adjusting toward the rational best response could also be appealing.
Similarly to before, this pattern can be formalized as

θ̃M(z) = λM × z + (1− λM)× θ(z) + ε,

where ε ∼ N(0, σ2). For each model, we discretize the threshold prediction.4

Finally, we consider a unified framework combining Quantal Response Equilibrium (Q),
Anchoring (A), and Mimicking (M), in the following weighted average:

Pr(θ̃; z) =
∑

m∈{Q,A,M}

qmPrm(θ̃; z, λm),

with qm ≥ 0 for m = Q,A,M , and qQ + qA + qM = 1.

We report the maximum likelihood estimates of up to three weight parameters (qQ, qA,
and qM), up to three behavioral parameters (λQ λA, and λM), and σ in Table 1. QRE explains
most of the threshold choices, because the estimated weight of QRE in the unified model is
qQ = 0.88. However, the QRE-only model is statistically rejected by the likelihood-ratio test
and must be combined with mimicking to explain the subjects’ choices.5

3Anchoring is a well-documented bias in the behavioral management literature. See for example
Schweitzer and Cachon (2000); Bostian et al. (2008); Katok and Wu (2009); Bolton et al. (2012); Becker-Peth
et al. (2013); Moritz et al. (2013).

4Specifically, we partition the interval [1, 1000] into 40 sub-intervals [1, 25], [26, 50], etc. and assign the
probability of a random threshold falling into each sub-interval to its midpoint.

5The degree of freedom for the LR test of QRE+Anchor or QRE+Mimic against the unified model equals
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QRE QRE+Anchor QRE+Mimic QRE+Anchor+Mimic

qQ 1.00 0.89 0.88
qA 0.00 0.01
qM 0.11 0.11
λQ 9.59 9.59 10.02 9.89
λA (0.04) (0.00)
λM 0.97 0.97
σ (17.16) 1.34 0.21

LogLikelihood -5741 -5740 -5554 -5553
LR test against

full unified model
p < 0.001 p < 0.001 p = 0.094 -

Table 1: Estimation of the Behavioral Models. Estimates in parentheses are unreliable since
the estimated qA is close to 0.

2.3 Further Discussion

In addition to the ones considered above, other behavioral models can potentially generate
excessively optimistic expectations in the LIFO game. However, we show that, quantitatively,
they fail to explain our results in the LIFO treatment.

2.3.1 Selection Neglect

A vast theoretical and experimental literature documents how individuals often fail to ac-
count for selection effects that influence future payoffs.6 Consider a subject under a LIFO
protocol, who fails to account for the negative selection of items that will be offered to her
in her older age. Specifically, in the second stage of the human-to-robot experiment, the
expected value of a jar, conditional on being offered to a subject, is obviously lower than
the unconditional one. This is because a jar with a value higher than a robot’s threshold
(divided by 1000), denoted as z ∈ [0, 1], is offered to the subject only with a probability of
0.25, rather than 0.5. Neglecting to account for this negative selection leads a subject to

1, as we only restrict qM = 0 or qA = 0, respectively. The degree of freedom for the LR test of QRE-only is
2.

6For recent examples, see Barron et al. (2024); Esponda and Vespa (2024), and references therewith.
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perceive the expected future payoff as higher than what it actually is. Hence, we have

θ̃(z) =
0.5

2

[
z +

1

2
(1− z)

]
.

In words, while the subject still understands that a jar with a value higher than the robot’s
threshold z is only half as likely to be offered to her, she believes that, conditional on being
offered a jar, the jar always has an expected value of 0.5.
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Figure 4: Selection Neglect. The black dashed line, the green dotted line, and the purple
dot-dashed line represent predictions from the QRE model, selection neglect, and prospect
theory, respectively. The blue solid curve indicates rational best responses. Red diamonds
and segments show the observed average thresholds, with 25th to 75th percentile ranges.

In Figure 4, the green dotted line represents the choices predicted by selection neglect.
As seen in the figure, these predicted choices are just above the rational ones (blue solid
curve), but still notably below the observed choices. Especially when the robot’s choice is
near 1 or 1000, where the conditional and unconditional expected values of a jar are the
same, selection neglect should not affect subjects’ decision. However, the observed choices
are still significantly higher than the rational benchmark.

2.3.2 Prospect Theory

Prospect theory, as proposed by Tversky and Kahneman (1992), postulates an asymmetry
in perceived value between gains and losses relative to a reference point. A Prospect theory
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utility function is defined as:

u(x;λP , r) :=

x0 + (x− x0)
r if x ≥ x0

x0 − λP (x0 − x)r if x < x0,

where x0 is the reference point, λP is the loss aversion coefficient, and r measures the risk
attitude for both gains and losses relative to x0. A subject is risk-loving for outcomes above
the reference point, preferring higher uncertain payoffs in the second period. We set the
reference point at x0 = 250.25, calculated as the expected value of a jar multiplied by the
probability of compatibility p = 0.5. We estimate the parameter values as λP = 142 and
r = 0.1.7 However, the estimates differ significantly from those in Tversky and Kahneman
(1992), where λP = 2.25 and r = 0.88. Also, especially for higher robot’s choices, the
predicted thresholds using these estimates, represented by the purple dot-dashed line in
Figure 4, are only slightly higher than the rational choices.

3 Detailed Description of the Experiments

The experiment described in Subsection 3.2 of the paper was run with 60 subjects over three
sessions at Washington University in St. Louis. We employed a within-subjects design, with
each subject engaging in both FIFO and LIFO reduced-form games. Each session involved
18 to 22 subjects, lasted about 75 minutes, and comprised 30 rounds of the FIFO treatment
followed by 30 rounds of the LIFO treatment. Subjects received 100 upfront tokens at the
beginning of each round in each treatment. Items, represented as jars, contained a random
number of tokens between 1 and 1000. Subjects accumulated tokens across the 60 rounds and
were paid in cash at the end with a conversion rate of $1 for every 650 tokens. The average
payment was $24.6, in addition to a $5 show-up fee. At the beginning of each treatment, we
delivered the experimental instructions in both digital and printed formats. Subjects then
went through illustrative examples of potential scenarios, followed by a quiz to assess their
understanding of the treatments. The timeline is as follows:

7λP and r are estimated as follows: A prospect-theory subject’s expected utility from a second jar when the
robot’s choice is z ∈ [0, 1] is U(z;λP , r) :=

1
1000 (

∑
x<1000×z p×u(x;λP , r)+

∑
x≥1000×z p(1−p)×u(x;λP , r)).

Then, the certainty equivalent is CE(z;λP , r) := u−1(U(z;λP , r);λP , r). Given the data {zi, θ̂i}Ni=1, the
estimates of λP and r minimize

∑N
i=1(θ̂i − CE(zi;λP , r))

2.
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FIFO

(30 rounds)

Instructions

for LIFO and
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LIFO

(30 rounds)

For the human-to-robot experiment presented in Subsection 4.2, we recruited 47 ad-
ditional subjects and held three sessions. In each session, subjects made seven threshold
choices per round (each associated with one robot’s choice) across five rounds, totaling 35
threshold choices per subject. Subjects accumulated tokens throughout the 35 rounds and
were compensated in cash at the end, with 600 tokens equaling 1 U.S. dollar. Each session
lasted approximately 45 minutes.
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4 Experiment Instructions

You will be participating in a decision-making experiment. All interactions will take place
through the computer. The experiment will last about 90 minutes.

Your earnings will depend on your decisions as well as the decisions of other participants
and chance. Therefore, it is important for you to understand the following instructions well.

During the experiment, you will collect tokens. At the end of the experiment, your tokens
will be converted into dollars at the exchange rate of $1 per 650 tokens. In addition, you
will receive a $5 show-up fee. You will be paid privately in cash at the end of the experiment.

All instructions and descriptions in this experiment are factually accurate. According to
the policy of this lab, at no point will we attempt to deceive you in any way.

You must remain silent and pay full attention during the experiment. If you have a question
or need assistance of any kind, please raise your hand. An instructor will come to you,
and you may then ask your question privately.

Now, please silence your cell phone and put it away.

If you break these rules, we may ask you to leave.

The experiment has two parts: A and B. For each part, you will first read the instructions.
Next, you will see some illustrative examples of how the events may unfold. Next, you will
be given a quiz to make sure you understood the instructions. Finally, you will make your
decisions. You will be provided with the instructions for Part B after you finish Part A.
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Agenda

• Part A

1. Instructions

2. Examples

3. Quiz

4. Decision Making

• Part B

1. Instructions

2. Examples

3. Quiz

4. Decision Making
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Overview of Part A

Part A has 30 rounds.

At the beginning of each round, you are randomly paired with another participant in this
room, which we will call your “counterpart” in the round. You and your counterpart will
each make a decision. Based on those decisions and random events, one of you may receive
a jar of tokens in the round.

In each round, the computer will generate one or two jars with a random number of tokens.
The number of tokens is equally likely to be any integer between 1 and 1000. For example,
each jar has a 1/1000 chance of having 1 token, a 1/1000 chance of having 2 tokens, and so
on. The number of tokens in each jar is independent of the number of tokens in the other jar.

At the end of the round, you will receive 100 tokens. In addition, if you receive a jar in the
round, you will receive the tokens that are in that jar. For example, if you do not receive a
jar, you will receive 100 tokens in the round. If you receive a jar that has 340 tokens, you
will receive 100 + 340 = 440 tokens in that round.

The next section describes the sequence of events which will determine whether you receive
a jar in the round.

12



Sequence of Events in Each Round (see FlowChart)

• First, you and your counterpart each selects a minimum acceptable value for a jar,
which is an integer between 1 and 1000. Note that you do not know your counterpart’s
selection when you are making the decision, and vice versa. Suppose you choose X

and your counterpart chooses Y .

• Next, the computer randomly chooses either you or your counterpart to be the active
player with a 50% chance each.

• If you are not chosen as the active player, you do not receive any jar in this round.

• If you are chosen as the active player, whether you receive a jar or not is determined
in two stages as follows.

• First stage:

– The computer generates Jar 1 with a random number of tokens. Recall that the
number of tokens is equally likely to be any integer between 1 and 1000.

– If the number of tokens in Jar 1 is at least as big as your minimum acceptable
value X, then one fair coin will be tossed to determine if you receive Jar 1 or
not.

– If the coin lands on Heads (with a 50% chance), you receive Jar 1, and the round
ends (there is no second stage).

– Otherwise (i.e., if either the number of tokens in Jar 1 is smaller than X or the
coin landed on Tails), you do not receive Jar 1, Jar 1 vanishes, and the round
proceeds to the second stage.

• Second stage:

– The computer generates Jar 2 with a random number of tokens. The number
of tokens is also equally likely to be any integer between 1 and 1000 and is
independent of the number of tokens in Jar 1.

– Then, one fair coin will be tossed.

∗ If the coin lands on Heads (with a 50% chance), you receive Jar 2 and the
round ends.

13



∗ If the coin lands on Tails (with a 50% chance), you do not receive Jar 2 and
the round ends.

End of a Round

At the end of each round, the tokens you received in that round are displayed on the screen.
Recall that you will be randomly paired with a newly selected counterpart in the next round.

Recall that we will convert the sum of your tokens across all rounds into cash at the exchange
rate of $1 per 650 tokens.

14



FlowChart
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Overview of Part B

Part B has 30 rounds.

At the beginning of each round, you are randomly paired with another participant in this
room, which we will call your “counterpart” in the round. You and your counterpart will
each make a decision. Based on those decisions and random events, one of you may receive
a jar of tokens in the round.

In each round, the computer will generate one or two jars with a random number of tokens.
The number of tokens is equally likely to be any integer between 1 and 1000. For example,
each jar has a 1/1000 chance of having 1 token, a 1/1000 chance of having 2 tokens, and so
on. The number of tokens in each jar is independent of the number of tokens in the other jar.

At the end of the round, you will receive 100 tokens. In addition, if you receive a jar in the
round, you will receive the tokens that are in that jar. For example, if you do not receive a
jar, you will receive 100 tokens in the round. If you receive a jar that has 340 tokens, you
will receive 100 + 340 = 440 tokens in that round.

The next section describes the sequence of events which will determine whether you receive
a jar in the round.
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Sequence of Events in Each Round (see FlowChart)

• First, you and your counterpart each selects a minimum acceptable value for a jar,
which is an integer between 1 and 1000. Note that you do not know your counterpart’s
selection when you are making the decision, and vice versa. Suppose you choose X

and your counterpart chooses Y .

• Next, the computer randomly chooses either you or your counterpart to be the active
player with a 50% chance each.

• If you are not chosen as the active player, you do not receive any jar in this round.

• If you are chosen as the active player, whether you receive a jar or not is determined
in two stages as follows.

• First stage:

– The computer generates Jar 1 with a random number of tokens. Recall that the
number of tokens is equally likely to be any integer between 1 and 1000.

– If the number of tokens in Jar 1 is at least as big as your minimum acceptable
value X, then one fair coin will be tossed to determine if you receive Jar 1 or
not.

– If the coin lands on Heads (with a 50% chance), you receive Jar 1, and the round
ends (there is no second stage).

– Otherwise (i.e., if either the number of tokens in Jar 1 is smaller than X or the
coin landed on Tails), you do not receive Jar 1, Jar 1 vanishes, and the round
proceeds to the second stage.

• Second stage:

– The computer generates Jar 2 with a random number of tokens. The number
of tokens is also equally likely to be any integer between 1 and 1000 and is
independent of the number of tokens in Jar 1. Starting here, the environment is
different than it was in Part A.

– If the number of tokens in Jar 2 is at least as big as your counterpart’s minimum
acceptable value Y , then two fair coins will be tossed.

17



∗ If both coins land on Heads (with a 25% chance), you receive Jar 2 and the
round ends.

∗ Otherwise (i.e., the coins land on Heads-Tails, Tails-Heads, or Tails-Tails,
which happens with a 75% chance), you do not receive Jar 2. Since your
counterpart is inactive, they cannot receive the jar either. Jar 2 vanishes,
and the round ends.

– If the number of tokens in Jar 2 is smaller than your counterpart’s minimum
acceptable value Y , then one fair coin will be tossed.

∗ If the coin lands on Heads (with a 50% chance), you receive Jar 2 and the
round ends.

∗ If the coin lands on Tails (with a 50% chance), you do not receive Jar 2 and
the round ends.

End of a Round

At the end of each round, the tokens you received in that round are displayed on the screen.
Recall that you will be randomly paired with a newly selected counterpart in the next round.

Recall that we will convert the sum of your tokens across all rounds from Part A and Part
B into cash at the exchange rate of $1 per 650 tokens.
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5 Quizzes

Quizzes for Part A (FIFO)

1. You will be paired with the same person in all rounds.

(A) True

(B) False

(C) Uncertain

2. What is the chance that you are not chosen as the inactive player in a given round?

(A) 30%

(B) 40%

(C) 50%

(D) 75%

3. Suppose that you have chosen a minimum acceptable value X equals 350, your coun-
terpart has chosen Y equals 600, and you are selected as the active player. Suppose
that the computer has randomly generated Jar 1 with 500 tokens and the first coin
toss lands on Heads. How many tokens will you receive in total in this round?

(A) 350

(B) 500

(C) 600

(D) 700

4. Suppose that you have chosen a minimum acceptable value X equals 350, your coun-
terpart has chosen Y equals 600, and you are selected as the active player. Suppose
that you did not get Jar 1 in the first stage, and the computer has randomly generated
Jar 2 with 500 tokens. What is the chance that you will get Jar 2?

(A) 0%

(B) 25%

20



(C) 50%

(D) 75%

5. Suppose you consider increasing your minimum acceptable value X from 350 to 800.
What effect will this have on the chance that you receive Jar 2 in this round?

(A) Increase

(B) Stay the same

(C) Decrease

Quizzes for Part B (LIFO)

1. You will be paired with the same person in all rounds.

(A) True

(B) False

(C) Uncertain

2. What is the chance that you are not chosen as the inactive player in a given round?

(A) 30%

(B) 40%

(C) 50%

(D) 75%

3. Suppose that you have chosen a minimum acceptable value X equals 350, your coun-
terpart has chosen Y equals 600, and you are selected as the active player. Suppose
that the computer has randomly generated Jar 1 with 500 tokens and the first coin
toss lands on Heads. How many tokens will you receive in total in this round?

(A) 350

(B) 500

(C) 600

(D) 700
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4. Suppose that you have chosen a minimum acceptable value X equals 350, your coun-
terpart has chosen Y equals 600, and you are selected as the active player. Suppose
that you did not get Jar 1 in the first stage, and the computer has randomly generated
Jar 2 with 500 tokens. What is the chance that you will get Jar 2?

(A) 0%

(B) 25%

(C) 50%

(D) 75%

5. Suppose that you have chosen a minimum acceptable value X equals 350, your coun-
terpart has chosen Y equals 600, and you are selected as the active player. Suppose
that you did not win Jar 1 in the first stage, and the computer has randomly generated
Jar 2 with 700 tokens. What is the chance that you will receive Jar 2?

(A) 25%

(B) 50%

(C) 75%

(D) 100%

6. Suppose that you have chosen a minimum acceptable value X equals 350. If your
counterpart increases Y from 600 to 900, your chance of receiving Jar 2 .

(A) Increases

(B) Stays the same

(C) Decreases
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