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Abstract

In a dynamic allocation setup, we experimentally study agents’ choices under the
First-In-First-Out (FIFO) and Last-In-First-Out (LIFO) queuing protocols. We find
that agents are nearly rational under FIFO but tend to be overly selective under
LIFO. In the model that anchors our experiment, we show that the magnitude of
such an excessively selective bias reduces the welfare performance gap between FIFO
and LIFO. Since strategic complementarities can reinforce overly selective behavior, we
show that such bias persists in a supplemental LIFO treatment where subjects interact
with non-strategic robots.
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1 Introduction

We study a dynamic allocation setting where agents match with items over time. Examples
of these environments are widespread, including the assignment of public housing, medical
appointments, deceased donors’ organs, etc. The theoretical literature has compared alter-
native queuing protocols, assessing their relative efficiency performances. Specifically, much
attention has been given to the First-In-First-Out (FIFO) and the Last-In-First-Out (LIFO)
protocols. The FIFO protocol is the most common, as priority is often tied to arrival times.
For example, a first-come-first-served rule is used by restaurants to allocate diners to tables,
or by universities to assign course slots to students. Although less common than FIFO,
LIFO arises in some applications.1 For example, in child adoption, adoptive parents tend
to prefer younger children (see Baccara et al. (2014)). Then, birth mothers of later-born
children have priority in the choice of adoptive parents, resulting in a setting equivalent to
a LIFO protocol.2

Since an agent’s priority deteriorates over time under LIFO, but improves under FIFO,
agents are expected to be less selective under LIFO than under FIFO. This difference in
queuing behavior implies mixed efficiency comparisons depending on the theoretical model
under consideration. While a more selective behavior under FIFO yields the benefits of
increased market thickness, it also imposes well-known negative queuing externalities when
waiting costs are present, and could result in the LIFO protocol being socially more desirable.

The relative performances of these protocols in real life also depend on how well the
individuals’ behavior approximates the canonical rationality assumption underlying the the-
oretical models. To explore this subject, in this paper, we design an experiment to study
agents’ behavior in FIFO and LIFO queues. Exploiting the model that anchors the experi-
ment, we also evaluate the efficiency implications of the behavioral patterns observed in the
experiment.

Specifically, we build a dynamic allocation model with no waiting costs where, at every
period, one agent and one item arrive at the market. Agents have a lifespan of two periods, so
any agent on the market is either “young” or “old.” Items’ values are common across agents
and drawn independently from the same uniform distribution. An item can be offered to an
agent only if it is compatible with her, and compatibility is independent across items and

1Implementing LIFO is challenging, since it is subject to manipulation, and considered “unfair” as in-
dividuals who just arrived are served first (see Kahneman et al. (1986), Margaria (2024), and references
therein).

2Similar considerations apply to perishable goods and to environments where the desirability of a match
decreases in the time spent on the market (e.g., unemployed workers, or houses on the real estate market).
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agents. At any period, an arriving item is offered to agents according to either a FIFO or a
LIFO protocol, conditional on compatibility. If the item is accepted by an agent, the agent
and the item leave the market matched. If the item remains unmatched, it is discarded at
the end of the period. Any agent at the end of her lifespan leaves the market unmatched.

In a rational equilibrium, a young agent accepts an item if and only if its value exceeds the
agent’s continuation value from waiting. We show that, under FIFO, the rational equilibrium
threshold is higher than the socially optimal one, while under LIFO, it is lower. In our setting,
the rational equilibrium under FIFO is more efficient than under LIFO.

Next, we consider “behavioral equilibria,” in which a young agent still follows a threshold
strategy, but the threshold is allowed to be different from her continuation value. We only
require behavioral equilibria to satisfy Minimal Queuing Rationality (or MQ-rationality).
Specifically, a MQ-rational agent understands that her prospects in the next period (i) are
worse than being offered the next item for sure, and (ii) deteriorate more under LIFO than
under FIFO. We show that if agents behave rationally under FIFO, the efficiency gap between
the FIFO and LIFO protocols first decreases and then increases again as agents become
increasingly overselective under LIFO (with respect to the rational benchmark).

We design a laboratory experiment featuring reduced-form settings that are strategically
equivalent to the FIFO and LIFO protocols. We find that the subjects satisfy MQ-rationality,
and their behavior under FIFO converges quickly to the rational benchmark. However, under
LIFO, the subjects remain consistently overselective with respect to the rational benchmark.
The magnitude of this bias reduces the efficiency gap between FIFO and LIFO, bringing
the efficiency under LIFO closer to the efficiency generated by the (approximately rational)
behavior under FIFO.

The observation that subjects under LIFO are overselective with respect to the rational
benchmark has implications broader than our setting. Specifically, introducing substantial
waiting costs into our model reverses the protocols’ efficiency ranking because, as mentioned
above, queuing externalities arise under FIFO. Since the optimal threshold under LIFO is
higher than the rational equilibrium one, a moderate overselective bias under LIFO would
still improve the protocol’s performance, increasing the welfare gap between FIFO and LIFO.
More generally, the welfare implications of our findings vary depending on the model at hand.

The LIFO setup displays strategic complementarities, where, if a subject expects others
to be overselective, the best response is to be overselective herself. To quantify this effect, in
a supplemental treatment, subjects play the reduced-form LIFO game against a non-strategic
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robot. We find that overselectivity persists in this setting, though to a lesser extent.3

Related Literature Dynamic allocation models, in which agents obtain items over
time, have received significant attention in the literature (for a survey, see Baccara and
Yariv (2021)).

Many papers have explored the trade-offs associated with alternative priority protocols.
As mentioned above, with waiting costs, agents under FIFO impose negative externalities
on others if they decide to stay in the queue rather than leave. Since LIFO rules out such
externalities, it often achieves socially superior outcomes (see Naor (1969); Hassin (1985);
Hassin and Haviv (2003); Su and Zenios (2004); Baccara et al. (2020)).

Generally, welfare rankings across protocols vary depending on the specific model under
consideration. Notably, Bloch and Cantala (2017) study a dynamic allocation model with a
fixed-length queue, where FIFO can be optimal among protocols assigning some priority to
agents who arrived first (i.e., mixtures between FIFO and uniform random priority, hence
excluding LIFO). The negative externality mentioned above does not arise in their setup
because each agent’s decision does not affect the queue length.

The experimental and empirical literature on queuing behavior is sparse, and to our
knowledge, it has not addressed behavioral patterns across protocols. Conte et al. (2014)
considers an experiment where agents under time pressure select a FIFO queue among multi-
ple ones differing in length, server speed, and entry fee. Dold and Khadjavi (2017) estimates
the willingness to pay for a more favorable queue slot under FIFO. Kremer and Debo (2012)
experimentally study queue-joining behavior when service quality is uncertain and, therefore,
herding may arise. On the empirical side, Batt and Terwiesch (2015) and Chan et al. (2017)
document the impact of delays on queue abandonment and outcomes in medical emergency
departments.

2 The Model

2.1 Setup

We consider an infinite-horizon matching market between agents and items. At the beginning
of each period, t ∈ {1, 2, . . . }, one agent and one item arrive on the market. Although each
item must leave at the end of its arrival period, an agent can stay on the market for up to
two periods before leaving. We refer to agents in their first and second periods on the market

3In the Supplemental Appendix, we employ well-known behavioral models to explain our findings.
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as “young” and “old,” respectively. When two agents are present simultaneously, they are
ranked according to their arrival times by a first-in-first-out (FIFO) or a last-in-first-out
(LIFO) protocol.

Upon arrival, each item’s value θ is drawn independently from the uniform distribution
over [0, 1], and it becomes publicly known. Any agent matched with the item receives the
payoff θ. When an agent leaves the market unmatched – that is, without having obtained
any item – she receives a zero payoff. In addition, an item is compatible with an agent with
probability p ∈ (0, 1), independently across items and agents. An agent can be offered an
item only if the item is compatible with her. There is no discounting or waiting cost to stay
on the market.

Once an item of value θ enters the market, the first-ranked agent chooses whether to
accept the item or not, conditional on compatibility. If she accepts, the first-ranked agent
and the item leave the market. If the item is not compatible with the first-ranked agent,
or if it is compatible but the agent rejects it, the item is offered to the second-ranked agent
(if there is any), conditional on compatibility. If the match occurs, the second-ranked agent
and the item leave the market. Otherwise, the item is discarded. In addition, at the end of
each period, if an old agent is still unmatched, she leaves. Therefore, one item and either
one or two agents leave the market at each period, either because they match or because
their lifespan ends.

For simplicity, we assume that an agent indifferent between accepting and rejecting an
item always accepts it. Our analysis remains unchanged under any other tie-breaking rule.

2.2 Rational and Behavioral Equilibrium

We study stationary Markov perfect equilibria, in which agents’ strategies only depend on
their age (young or old) and their rank in the queue. Since an old agent has a weakly domi-
nant strategy in accepting any item offered to her rather than leaving the market unmatched,
an equilibrium is fully described by young agents’ behavior. While the rational benchmark
requires the minimum acceptable item’s value to coincide with an agent’s continuation value,
we consider behavioral equilibria, in which agents’ thresholds can differ from it.

2.2.1 First-In-First-Out

In the FIFO protocol, an old agent is always ranked first. Thus, a young agent’s continuation
value, and therefore her minimum acceptable value, are independent of her ranking upon
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arrival.
At the beginning of each period, there are either two agents (one old and one young,

ranked first and second, respectively) or only one (young) agent on the market. Let {vFo , vFy2, vFy1}
denote the expected payoffs of the agents in these scenarios at the beginning of a period,
before the item’s value is realized. Suppose that a young agent uses a threshold strategy
θ̂ ∈ [0, 1]. If there are two agents, one old and one young, their payoffs are:

vFo =
p

2
,

vFy2 = p(1− θ̂)

[
(1− p)

1 + θ̂

2
+ pvFo

]
+
[
1− p(1− θ̂)

]
vFo . (1)

The old agent is ranked first and accepts any compatible item, yielding p
2
. Consider the

young agent, ranked second. The item is both compatible with her and acceptable with
probability p(1− θ̂). In this scenario, the young agent obtains the item with expected value
1+θ̂
2

only if it is incompatible with the old agent (i.e., with probability 1−p). Otherwise, the
young agent remains unmatched with continuation value vFo . If no old agent is present, the
young agent’s expected payoff is:

vFy1 = p(1− θ̂)
1 + θ̂

2
+
[
1− p(1− θ̂)

]
vFo . (2)

We denote the rational Markov perfect equilibrium threshold and expected payoffs under
FIFO by (θ

F
, vFo , v

F
y2, v

F
y1), where θ

F
= vFo = p

2
.

Next, we consider a behavioral equilibrium where a young agent’s decision can differ from
the rational choice. Namely, we have

θ̃F = αvFo = α
p

2
, (3)

where 0 < α < 2
p

to guarantee 0 < θ̃F < 1. While α = 1 corresponds to the rational
benchmark, we refer to agents with α > 1 and α < 1 as overselective and underselective under
FIFO, respectively. For any α ∈ (0, 2

p
), we denote the unique solution of the equilibrium

conditions (1), (2), and (3) by (θ̃F , ṽFo , ṽ
F
y2, ṽ

F
y1).
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2.2.2 Last-In-First-Out

In the LIFO protocol, a young agent is always ranked first. If all young agents play a
threshold strategy θ̂ ∈ [0, 1], an old (second-ranked) agent’s expected payoff at the beginning
of the period is

vLo = (1− p)
p

2
+ pθ̂

pθ̂

2
. (4)

The old agent can obtain an item if the item is compatible with her (probability p) and either
incompatible with the young agent (probability 1 − p and expected value 1

2
) or compatible

but unacceptable (probability pθ̂ and expected value θ̂
2
).

A young agent’s expected payoff is

vLy = p(1− θ̂)
1 + θ̂

2
+
[
1− p(1− θ̂)

]
vLo . (5)

Since the young agent is ranked first, she obtains the item if it is compatible and acceptable
to her (probability p(1− θ̂)), yielding the expected payoff 1+θ̂

2
. Otherwise, her continuation

value is vLo .
Letting (θ

L
, vLy , v

L
o ) be the rational Markov perfect equilibrium threshold and payoffs

under LIFO, it is easy to check that θ
L
= vLo =

1−
√

1−p3(1−p)

p2
.

Again, a behavioral equilibrium allows agents to use thresholds different from their con-
tinuation values. Namely, we consider

θ̃L = βvLo (6)

for some β > 0. While β = 1 corresponds to the rational benchmark, we refer to agents
with β > 1 and β < 1 as overselective and underselective under LIFO, respectively. We
denote the unique solution of the equilibrium conditions (4), (5), and (6) by (θ̃L, ṽLy , ṽ

L
o ). In

particular, we obtain

θ̃L =
1−

√
1− β2p3(1− p)

βp2
. (7)

Again, 0 < β < 2
p

guarantees 0 < θ̃L < 1.
The equilibrium threshold θ̃L increases in β. Naturally, as β increases, for the same

continuation value vLo , an agent becomes more selective. In addition, because each agent’s
continuation value vLo increases as other agents become more selective, there is an indirect
effect driven by strategic complementarity. More formally, if an agent is overselective (β > 1),
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but others are not and play the rational equilibrium strategy θ
L, then the agent’s threshold

would be βvLo < θ̃L. The opposite applies if an agent is underselective (β < 1) but the others
are not. The following lemma illustrates this effect.

Lemma 1. Under LIFO, the behavioral equilibrium threshold θ̃L is such that θ̃L > βvLo for
β > 1, and θ̃L < βvLo for β < 1.

2.3 Equilibrium and Efficiency Comparisons

Next, we compare the rational equilibria under FIFO and LIFO, and study how behavioral
patterns influence this comparison. We start with some preliminaries. For h = F,L, given a
threshold θ̂ ∈ (0, 1) used by all agents, we denote by W h(θ̂) the expected time that an agent
stays on the market, which coincides with the probability that an agent is not matched upon
arrival. Since the probability of matching on arrival under LIFO is 1 −WL(θ̂) = p(1 − θ̂),
we have

WL(θ̂) = 1− p(1− θ̂). (8)

Under FIFO, W F (θ̂) has to satisfy

W F (θ̂) = (1−W F (θ̂))[1− p(1− θ̂)] +W F (θ̂)[1− (1− p)p(1− θ̂)]. (9)

This is because a young agent is ranked first on arrival if and only if her immediate
predecessor is matched on arrival (with probability 1 −W h(θ̂)). Then, that agent stays on
the market into the second period with probabilities 1− p(1− θ̂) and 1− (1− p)p(1− θ̂) if
she is ranked and second on arrival, respectively. Solving (9) for W F (θ̂), we obtain

W F (θ̂) = 1− (1− p)p(1− θ̂)

1− p2(1− θ̂)
. (10)

We measure the efficiency of a queuing protocol by its average match value. More for-
mally, given a threshold θ̂ ∈ (0, 1) used by all agents, the allocation efficiency of protocol
h = F,L is given by

Eh(θ̂) =
pW h(θ̂)

2
+ (1− pW h(θ̂))

p(1− θ̂2)

2
, (11)

where W h(θ) is determined by (8) for LIFO and by (10) for FIFO.4 The first term of (11)
4Alternatively, the same allocation efficiency (11) can be derived from the agents’ average payoffs: given
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represents the scenario in which an old agent is present on the market and is compatible with
an item (with probability pW h(θ̂)). Then, the item is matched for sure, yielding an expected
efficiency gain of 1

2
. Otherwise, only a young agent can obtain the item. This happens if

the item is both compatible and acceptable to her. Therefore, with probability p(1− θ̂), the
expected efficiency gain is 1+θ̂

2
, resulting in the second term of (11).

2.3.1 Allocation Efficiency in the Rational Equilibrium

Setting α = β = 1, we now compare the efficiency in the rational equilibrium with the
socially optimal (i.e., efficiency maximizing) stationary mechanisms under FIFO and LIFO.5

Our first result describes an optimal mechanism.6

Proposition 1. 1. A socially optimal stationary allocation mechanism is a FIFO protocol
with

θF−opt =
−(1− p2) +

√
1− 2p2 + p3

p2
; (12)

2. We have 0 < θF−opt < θ
F .

Subject to compatibility, a social planner prefers to match an item with an old agent
rather than a young agent. This is because, while the surplus of these two matches is
the same, the young agent could realize some positive surplus by staying on the market
through the next period. Since the planner prioritizes old agents (i.e., uses FIFO), an
optimal mechanism is identified by the threshold θF−opt that maximizes the efficiency (11)
under FIFO, resulting in Part (1) of Proposition 1.

For Part (2) of Proposition 1, suppose a young agent under FIFO is offered an item of
value θ

F , and is therefore indifferent between accepting or rejecting it. Rejection strictly in-
creases the probability of the next agent remaining unmatched, since, conditional on compat-
ibility with both agents, the next item will not be offered to her. Therefore, a social planner
strictly prefers that match to occur, implying the rational threshold θ

F being strictly above
the optimal one θF−opt—that is, rational agents under FIFO are too selective compared to
the social optimum.

While Proposition 1 guarantees that in this setting, a social planner prefers a FIFO
protocol to a LIFO one, the next result identifies the most efficient threshold under LIFO.

θ̂ ∈ (0, 1), we have EL(θ̂) = vLy under LIFO, and EF (θ̂) = (1−WF (θ̂))vFy1 +WF (θ̂)vFy2 under FIFO.
5A stationary mechanism determines an item’s allocation only based on the item’s value and the presence

of an old agent on the market.
6The proof of Proposition 1 follows easily from (10) and (11), and is therefore omitted.
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Proposition 2. The optimal threshold θL−opt under LIFO is such that θL−opt > θ
L.

To understand Proposition 2, suppose a young agent is offered an item of value θ
L under

LIFO, and is therefore indifferent between accepting or rejecting it. If an old agent is present
and the item is compatible with her, then by allocating the item to the old agent, she leaves
the market matched rather than unmatched, generating a strictly positive surplus. Moreover,
the continued presence of the young agent in the next period generates no externalities on
future agents, as the agent will be ranked second and, therefore, may obtain the next item
only when it would be wasted otherwise. Thus, a social planner strictly prefers the young
agent to reject, implying that the equilibrium threshold θ

L is below the optimal one θL−opt,
i.e. rational agents under LIFO are too accommodating compared to the social optimum.

The next result compares the rational equilibrium under FIFO and LIFO, and their
respective allocation efficiencies.

Proposition 3. In the rational equilibrium,

1. Agents are more selective under FIFO than under LIFO–that is, θL < θ
F ;

2. The expected time on the market under FIFO is longer than under LIFO–that is,
W F (θ

F
) > WL(θ

L
);

3. The allocation efficiency is higher under FIFO than under LIFO–that is, EF (θ
F
) >

EL(θ
L
).

Part (1) of Proposition 3 holds because young agents’ positions deteriorate more under
LIFO than under FIFO, making them relatively less selective. Therefore, on average, fewer
old agents are present on the market under LIFO, as highlighted in Part (2). Part (3) of
Proposition 3 shows that, in our setting, the FIFO rational equilibrium is more efficient than
the LIFO one.

To gain intuition about Part (3), we compare the expected payoffs of a young agent
arriving as ranked first under FIFO, as ranked second under FIFO, and under LIFO (where
she is always first), respectively, conditional on all agents using the same strategy θ̂ ∈ (0, 1).
The expected payoff of a young agent who is ranked first under FIFO is vFy1, as described in
(2). Suppose now that the young agent is ranked second in FIFO rather than first. The lower
rank affects the agent’s payoff only if the arriving item is compatible with and acceptable
to the agent, and also compatible with the (first-ranked) old agent. This event occurs with
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probability p2(1 − θ̂), and in this case, the young agent receives a continuation value of p
2
,

rather than 1+θ̂
2

, implying

vFy1 − vFy2 = p2(1− θ̂)

(
1 + θ̂

2
− p

2

)
.

Finally, consider a young agent under LIFO, rather than ranked first under FIFO. The
change in protocol affects the agent’s payoff only if the arriving item is either incompatible
or unacceptable, which occurs with probability 1 − p(1 − θ̂). Conditional on this scenario,
her payoff changes only if next period’s item is compatible with both her and the next agent,
which occurs with probability p2. Then, our agent, who is now old, surely obtains the next
item under FIFO (with expected value 1

2
), while under LIFO she obtains it only if the item’s

value is unacceptable to the next agent (probability θ̂), with expected value θ̂
2
. Hence,

vFy1 − vLy =
[
1− p(1− θ̂)

]
p2

(
1

2
− θ̂

θ̂

2

)
.

For any θ̂ ∈ (0, 1), it is easy to verify that vFy1 > vFy2 > vLy –that is, being second upon
arrival under FIFO is preferable to entering a market under LIFO. In particular, this holds
for θ̂ = θ

L. Furthermore, if an agent under FIFO chooses θF = p
2

instead of θL, her payoff is
even higher. Thus, the expected payoff of an arriving agent under FIFO, which is a weighted
average of the values of being ranked first or second upon arrival, must be higher than under
LIFO, yielding Part (3) of Proposition 3.

2.3.2 Allocation Efficiency in the Behavioral Equilibrium

Next, we describe how behavioral patterns affect the previous results. We begin by formal-
izing a minimal amount of rationality in queues.

Definition 1. An agent is “minimally queuing-rational” (MQ-rational) if her strategies
θL, θF are such that (i) θL, θF ≤ 1/2, and (ii) θL ≤ θF .7

Requirement (i) of MQ-rationality guarantees that an agent always accepts any item of
value greater than 1/2, which is the continuation value if the next period’s item is both
compatible and allocated to the agent for sure. Requirement (ii) amounts to an agent

7MQ-rationality translates into bounds for α and β. Specifically, α ≤ 1
p and, if all agents are MQ-rational,

then β ≤ β, where β is the unique positive solution of 1−
√

1−β2p3(1−p)
βp2 = αp

2 .
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understanding that her future position deteriorates more under LIFO than under FIFO.
It is easy to verify that Parts (1) and (2) of Proposition 3 continue to hold in behavioral
equilibrium if agents are (strictly) MQ-rational.

However, if MQ-rational agents under LIFO become increasingly selective – that is, if θ̃L

moves toward θ̃F or, equivalently, β increases – the difference in expected wait time between
LIFO and FIFO decreases. Proposition 4 illustrates how behavioral patterns under LIFO
influence the equilibrium efficiency and how it compares with the FIFO protocol.

Proposition 4. If agents are MQ-rational,

1. The allocation efficiency of the LIFO equilibrium is a single-peaked function of β, and
is maximal at some β∗ > 1;

2. We have EL(θL−opt) < EF (θ
F
). Moreover, the efficiency gap between the FIFO equi-

librium at α = 1, and the LIFO equilibrium decreases for β ∈ [1, β∗] and increases for
β ∈ (β∗, β].

Part (1) of Proposition 4 follows from Proposition 2: Efficiency is maximized at a thresh-
old higher than θ

L, associated with β∗ > 1. Part (2) guarantees that the efficiency under
LIFO, even at the optimal threshold, is lower than the FIFO rational equilibrium efficiency.
The intuition is almost identical to Part (3) of Proposition 3, substituting θ

L with θL−opt.
Proposition 4 summarizes the efficiency implication of agents departing from rational

behavior under LIFO. In particular, if the agents are moderately overselective under LIFO
(1 < β < β∗), such departure is efficiency-improving, and it reduces the efficiency gap
between LIFO and FIFO. However, if they become extremely overselective (β > β∗), the
efficiency gap starts to grow again and can ultimately surpass the one associated with the
rational equilibrium. Proposition 4 constitutes the underpinning of the efficiency implications
of our experimental analysis, which we present next.

3 Experimental Design

3.1 Reduced-Form Games

To replicate an infinite-horizon overlapping generation game in an experimental setting, we
follow the approach of Lim et al. (1986), Aliprantis and Plott (1992), and Marimon and
Sunder (1993). Specifically, we consider reduced-form static setups, which are strategically
equivalent to the FIFO and LIFO environments presented in Section 2.
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Reduced-Form FIFO A single player selects a threshold θ̃ ∈ (0, 1). Then, an item with
value θ1 ∼ U [0, 1] arrives and is compatible with the player with probability p ∈ (0, 1). If
the item is compatible and θ1 ≥ θ̃, the player receives the payoff θ1, and the process ends.
Otherwise, a second item arrives with value θ2 ∼ U [0, 1] and compatible with probability
p ∈ (0, 1). If the second item is compatible, the player’s payoff is θ2. Otherwise, the player
obtains zero.

This decision problem is equivalent to a FIFO protocol described in Section 2.2.1, and
the strategy chosen by a player with a behavioral parameter α ∈ (0, 2

p
) is θ̃F = αp

2
.

Reduced-Form LIFO Players A and B simultaneously select their thresholds θ̃A ∈ (0, 1)

and θ̃B ∈ (0, 1), respectively. Then, either player is equally likely to be chosen as ‘active’
player. The other player obtains a payoff of zero.

Suppose that Player i = A,B is chosen to be active. An item with value θ1 ∼ U [0, 1]

arrives and is compatible with Player i with probability p ∈ (0, 1). If the item is compatible
with Player i and θ1 ≥ θ̃i, then Player i obtains θ1 and the game ends. Otherwise, a second
item arrives with value θ2 ∼ U [0, 1], compatible with each player with probability p ∈ (0, 1),
with compatibility independent between players. Then, one of these cases follows:

1. If θ2 ≥ θ̃−i and the second item is not compatible with Player −i but is compatible
with Player i (with probability p(1− p)), Player i obtains θ2.

2. If θ2 < θ̃−i and the second item is compatible with Player i (with probability p), then
Player i obtains θ2.

3. Otherwise, Player i obtains zero.

This setup is strategically equivalent to the LIFO protocol studied in Section 2.2.2. If the
players of this game have a behavioral parameter β ∈ (0, 2

p
), there exists a unique behavioral

equilibrium where both choose θ̃L, described in (7).

3.2 Experiment Description

The experiment took place at Washington University in Saint Louis, with 60 undergraduate
students as participants. Each session comprises 30 rounds of the FIFO game and 30 rounds
of the LIFO game. We briefly describe the experiment; detailed instructions are in the
Supplemental Appendix.
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Subjects are randomly paired at the start of each round in both FIFO and LIFO.8 Items
are represented by jars of tokens. Each subject selects an integer between 1 and 1000 as
minimum acceptable jar value. Then, one subject in each pair is randomly chosen as ‘active’.

In the FIFO treatment, a computer generates the first jar with a random value. If the
value meets or exceeds the active subject’s threshold, that subject obtains the jar with
probability 50%, concluding the round. Otherwise, a second jar is generated. Regardless of
its value, the active subject has a 50% chance of obtaining the second jar. If she does not
obtain it, she receives a payoff of zero, and the round ends.

In the LIFO treatment, a computer generates the first jar with a random value. If the
value meets or exceeds the active subject’s threshold, the active subject obtains the jar with
a 50% chance, concluding the round. Otherwise, a second jar is generated. If the second
jar’s value meets or exceeds the inactive subject’s threshold, the active subject has a 25%
chance of obtaining the jar. If the second jar’s value is strictly below the inactive subject’s
threshold, the active subject has a 50% chance of obtaining it. If the active subject fails to
obtain the second jar, she receives zero, ending the round.

4 Experimental Results

4.1 Main Analysis

First, we assess whether the observed choices satisfy MQ-rationality, formalized in Defini-
tion 1. MQ-rationality requires a subject’s threshold choices under LIFO to be lower than
under FIFO, and both to be at most 500.

Result 1. Subjects are MQ-rational, i.e., their choices in both treatments are mostly lower
than 500, and lower under LIFO than under FIFO.

Exhibit 1 describes the threshold choices of each treatment. Since the subjects may
gradually learn, we present three data sets: all 30, last 15, and last 5 rounds.

The last three columns of the table in Exhibit 1 summarize the experimental data. The
second, third, and fourth column of the table show the mean and standard deviation (in
parentheses) of the subjects’ choices across all 30, last 15, and last 5 rounds, respectively,
which are all consistent with MQ-rationality.

We also observe MQ-rationality at individual levels. The figures in Exhibit 1 show each
subject’s average choices (each dot representing one subject), averaged across all 30, last 15,

8The pairing is strategically irrelevant under FIFO but ensures a similar structure between treatments.
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Experimental Data
Equilibrium Threshold All rounds Last 15 Last 5

FIFO 250 270.6 258.5 266.8
(23.1) (26.8) (28.2)

LIFO 127 218.3 197.8 193.5
(22.9) (24.7) (27.1)

Exhibit 1: Subjects’ Threshold Choices. The table shows the choices averaged across all
subjects. The figures show individual subjects’ average choices under LIFO (on the x-axis)
and FIFO (on the y-axis).

or last 5 rounds under LIFO (on the x-axis) and FIFO (on the y-axis). Hence, the dots in the
bottom-left triangle of each plot represent subjects that satisfy MQ-rationality on average.

The subjects’ threshold choices either satisfy MQ-rationality or do not deviate enough
from it to reject the MQ-rationality hypothesis. Let {θ̂Fi , θ̂Li }60i=1 be the observed threshold
choices under FIFO and LIFO. Assuming that the chosen thresholds are independent samples
of the equilibrium thresholds (θ̃F , θ̃L), the 95% confidence interval for the FIFO threshold
θ̃F is [224.4, 316.8], [204.8, 312.2], or [210.4, 323.1] for the data from all 30, last 15, and last
5 rounds, respectively. Similarly, the 95% confidence interval for the threshold difference,
θ̃F − θ̃L, is [15.3, 89.3], [19.2, 102.2], or [26.2, 120.3] for the data from all 30, last 15, and
last 5 rounds. One-sided tests reject the hypotheses θ̃F ≥ 500 and θ̃L ≥ θ̃F .

Next, we compare the subjects’ choices to the rational equilibria. As shown in Exhibit 1,
rationality (α = β = 1) entails the equilibrium threshold under FIFO and LIFO of θF = 250

and θ
L
= 127, respectively.

Result 2. (i) The subjects’ behavior is close to rational in FIFO, but overselective in LIFO;
(ii) The observed difference between the FIFO and LIFO thresholds is smaller than in the
rational equilibrium.

Exhibit 2 illustrates the evolution of the subjects’ choices over all rounds. For each round
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of each treatment, the figure shows the mean of the subjects’ choices (in solid lines) and the
95% confidence interval (in the shaded areas).

Exhibit 2: Rational vs. Observed Choices under FIFO [Panel (a)] and LIFO [Panel (b)]

Panel (a) depicts the choices under FIFO, and the rational threshold of 250. The thresh-
old choices are generally aligned with the rational benchmark, starting higher in the early
rounds but converging to 250 within 5-10 rounds. Panel (b) shows the choices under LIFO,
and the rational equilibrium threshold of 127. Although the mean of the chosen thresh-
olds tend to decrease slightly over time, they remain significantly higher than the rational
equilibrium of 127. Therefore, from Results 1 and 2, we conclude that the observed differ-
ence between the FIFO and LIFO thresholds is positive, but smaller than what the rational
equilibrium predicts.

Lastly, we estimate the behavioral parameters α and β using the observed choices.

Result 3. (i) The estimated behavioral parameters from the threshold choices from all, last
15, and last 5 rounds, are α̂ ∈ [1.03, 1.08] and β̂ ∈ [1.49, 1.67]. (ii) Such estimates imply a
reduction in the allocation efficiency gap between the FIFO and LIFO protocols compared to
the rational equilibrium.

The estimate of the behavioral parameter α̂ is derived from θ̂F = α̂p
2
, with p = 1

2
. Here,

θ̂F represents the threshold choices averaged across all, the last 15, or the last 5 rounds,
resulting in values of 270.6, 258.5, or 266.8, respectively, as shown in Exhibit 1. Similarly,
the estimate of the parameter β̂ is obtained from (7) and Exhibit 1.
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The behavioral patterns described in Result 3 allow to draw the efficiency implications of
our experimental results. According to Part (2) of Proposition 4, the overselective behavior
under LIFO has the potential to enhance efficiency, if it is not too severe. With p = 0.5, we
have θ

L
= 0.127 and θL−opt = 0.184, corresponding to βL−opt = 1.42.

Hence, the observed thresholds under LIFO in Exhibit 1 are excessively high, leading to
a decrease in the efficiency relative to the maximal one. However, even the highest mean
threshold choice of θ̂L = 0.218 from all 30 rounds satisfies EL(θ̂L) > EL(θ

L
). The allocation

efficiency under the observed behavior is lower than the optimal level but still higher than
what rationality would entail. Therefore, the behavioral pattern we document reduces the
efficiency gap between the FIFO and LIFO protocols with respect to the rational equilibrium
and helps mitigate the efficiency loss caused by the LIFO protocol.

Our experimental results have broader implications, including setups where the welfare
ranking between FIFO and LIFO is reversed. In these cases, the welfare consequences of
the overselective bias under LIFO need to be evaluated carefully, depending on the model
at hand. For example, consider a setting similar to ours, where agents must pay a positive
waiting cost if they enter their old age still unmatched. In such a setting, a LIFO proto-
col generates an efficiency benefit relative to FIFO, since, as in Part (2) of Proposition 3,
equilibrium waits are going to be longer in FIFO. If waiting costs are high enough, Part
(3) of Proposition 3 reverses, and LIFO becomes more efficient than FIFO under rational
behavior. Note, however, that, since Proposition 2 would still hold, a moderate overselective
bias under LIFO would still entail an efficiency gain. Then, our results suggest that both the
performance of LIFO and the efficiency gap between the two protocols increase with respect
to the rational benchmark.

Finally, the observed behavior conflicts with standard economic theories. Time discount-
ing, waiting costs, and risk aversion would all imply α < 1 and β < 1. Moreover, subjects’
continuation values under LIFO are more complex to compute than under FIFO, as they
depend on beliefs about another agent’s choice. Therefore, aversion to complexity or am-
biguity would lead to a more cautious behavior under LIFO than FIFO, implying β < α,
which is the opposite of what we find. In the next section, we address the impact of strategic
considerations in our results.

4.2 Human-to-Robot LIFO Treatment

While choices under FIFO are non-strategic, a subject’s continuation value under LIFO
depends on the opponent’s threshold choice, as illustrated in Lemma 1. If subjects form
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beliefs about their opponents’ choices based on observed high thresholds from earlier rounds,
they may not adjust their choices downward, thereby preventing convergence to the rational
equilibrium. To address this effect, we conducted an additional LIFO treatment, where 47
subjects played the reduced-form LIFO game against robots with known strategies.

In this additional treatment, a subject selects an integer between 1 and 1000 for each of
the 7 possible robot choices Z ∈ {1, 100, 200, 300, 400, 500, 1000}. For each robot’s choice an
subject’s response, we apply the LIFO treatment described in Section 3.2. The rational best
response to a robot’s choice can be derived by replacing θ̂ with z := Z

1000
∈ [0, 1] in (4) to

obtain θ(z) = 1
2
[p(1− p) + p2z2], and multiplying by 1000.

The human-to-robot LIFO treatment was repeated for 5 rounds. Exhibit 3 shows that
the subjects’ average choices still consistently exceeded the rational best responses to the
robot’s choices.
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Exhibit 3: Subjects’ Choices in the Human-to-Robot LIFO Treatment. A gray dot represents
a subject’s average threshold choice across 5 rounds. Red diamonds and segments represent
observed averages and 25-to-75 percentile ranges, respectively. The blue curve is the rational
best response.

We estimate a subject’s behavioral parameter β̂ using (6), as the ratio of their threshold
choice θ̂ to the rational best response θ(z) for each robot’s choice z. After averaging this
estimation across all rounds and subjects, the resulting estimate β̂ falls within the range of
[1.31, 1.56], which is close to the range [1.49, 1.67] in Result 3 of the original LIFO treatment.
To summarize, in the human-to-robot LIFO treatment, without strategic complementarities,
subjects still exhibit an overselective bias similar to the one found in the original LIFO
treatment. In the Supplemental Appendix, we explore to what extent some well-known
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behavioral frameworks can explain this residual bias, but further research could be beneficial
to understand the causes of this departure from rationality.
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5 Appendix

Proof of Lemma 1 When β = 1, we have θL = vLo . For β < 1, let x = β2 and y = p3(1−p).
Then, θ̃L < βvLo = βθ

L if and only if

1−
√
1− xy

x
< 1−

√
1− y.

To verify the last inequality, observe that the two sides of it are equal at x = 1 and

d
(

1−
√
1−xy
x

)
dx

> 0 ⇐⇒ xy

2
(1− xy)−1/2 > 1−

√
1− xy

⇐⇒ 1− xy

2
−
√
1− xy > 0

⇐⇒ 0 < xy < 1,

which always holds. A similar argument applies if β > 1. �

Proof of Proposition 2 From (8) and (11), we obtain

θL−opt =
1− p+ p2 −

√
(1− p+ p2)2 − 3p3(1− p)

3p2
. (13)

Recall that θL =
1−

√
1−p3(1−p)

p2
. Let x = p2 and y = p(1− p). Then, θL < θL−opt if and only if

1−
√

1− xy <
(1− y)−

√
(1− y)2 − 3xy

3

⇐⇒ (2 + y) < 3
√
1− xy −

√
(1− y)2 − 3xy

⇐⇒ (1− y)(3 + y) < 3 + xy,

which always holds since (1− y)(3 + y) = 3− 2y − y2 < 3. �

Proof of Proposition 3 Part (1) For h = F,L, we have θ
h
= vho . Since vFo = p

2
, and vLo

is given by (4), it is easy to check that vFo > vLo for any θ̂ ∈ (0, 1).

Part (2) By comparing (8) and (10), observe that WL(θ̂) < W F (θ̂) for any θ̂ ∈ (0, 1).
Moreover, WL(θ̂) = 1−p(1− θ̂) strictly increases in θ̂. Thus, (2) follows from (1), as θL < θ

F .
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Part (3) First, we show that, for any θ̂ ∈ (0, 1), vFy2(θ̂) > vLy (θ̂). From (1), we have

vFy2(θ̂) = p(1− θ̂)

[
(1− p)

1 + θ̂

2
+ p

p

2

]
+
[
1− p(1− θ̂)

] p
2
.

From (4) and (5),

vLy (θ̂) = p(1− θ̂)
1 + θ̂

2
+
[
1− p(1− θ̂)

] [
(1− p)

p

2
+ (pθ̂)

pθ̂

2

]
.

Then,

vFy2(θ̂)− vLy (θ̂) = p(1− θ̂)

[
p2 − p(1 + θ̂)

2

]
+
[
1− p(1− θ̂)

] p2(1− θ̂2)

2

= p(1− θ̂)
p2 − p2(1− θ̂2)

2
> 0. (14)

Finally,
EL(θ

L
) = vLy (θ

L
) < vFy2(θ

L
) < vFy2(θ

F
) < EF (θ

F
).

The first inequality follows from (14), and the subsequent inequalities hold because vFy2(θ̂)

increases as θ̂ approaches θ
F
= p

2
, and vFy2(θ

F
) must be lower than the average utility across

all agents under FIFO. �

Proof of Proposition 4 Since EL(θ̂) = vLy (θ̂), EL(θ̂) can be derived from (8) and (11) as
a cubic function of θ̂. Then,

dEL(θ̂)

dθ̂
=

p

2

[
−2θ̂ + p(1− p+ pθ̂2) + (1− p(1− θ̂))2pθ̂

]
︸ ︷︷ ︸

:=h(θ̂)

.

For Part (1), note that h(θ̂) has a positive quadratic coefficient, that h(0) = p(1−p) > 0,
and that h

(
1
2

)
= p

(
2− 5p

4

)
− 1 < 0. Consequently, EL(θ̂) is a single-peaked function over

the interval θ̂ ∈ [0, 1
2
], which we focus on by MQ-rationality.

Given that θ̃L strictly increases in β by (7), EL(θ̂) is a single-peaked function of β. Fur-
thermore, θL−opt > θ

L from Proposition 2, so the maximal efficiency is achieved at some
β∗ > 1.
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For Part (2), observe that, since h(p
2
) = p3(3p

4
− 1) < 0, we have θ

F
= p

2
> θL−opt. Then,

EL(θL−opt) = vLy (θ
L−opt) < vFy2(θ

L−opt) < vFy2(θ
F
) < EF (θ

F
).

The first inequality follows from (14), and the subsequent inequalities hold for reasons similar
to the last part of the proof of Proposition 3. �
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