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Abstract

In school choice, students make decisions based on their expectations of particular

schools’ suitability, and the decision to gather information about schools is influenced

by the acceptance odds determined by the mechanism in place. We study a school

choice model where students can obtain information about their preferences by incur-

ring a cost. We demonstrate greater homogeneity in rank-order reports and reduced

information acquisition under the Deferred-Acceptance (DA) mechanism, resulting in

an increased reliance on random tie-breaking and ultimately inefficient outcomes. Thus,

it is critical for the DA mechanism to have easy access to school information in order

to maintain its efficiency.

1 Introduction

The field of market design in public school choice has grown significantly since the

publication of Abdulkadiroğlu and Sönmez (2003). The standard approach in the

literature is to adopt Gale and Shapley (1962)’s two-sided matching model and view

students and schools as agents with preferences over potential partners. In practice,

school districts assign students to schools based on students’ preference reports and

schools’ priorities, which may consider factors such as test scores and proximity.

The two most prominent mechanisms are the Immediate-Acceptance (also known

as the “Boston” mechanism) and the Deferred-Acceptance (DA) mechanisms. Both of

these mechanisms use student preference reports and school priorities to run a series

of algorithm rounds. In each round, students apply for their top-choice schools. If a
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student is rejected by their first choice, they move on to their next choice and apply

again in the next round. The Boston mechanism considers the matches made in each

round to be permanent and starts each new round with unmatched students and unoc-

cupied schools. This means that students who first apply to competitive schools take

the risk of losing the opportunity to be matched with their next preferred schools if

they are rejected by their top choices. On the other hand, the DA mechanism defers

the matches until the end of all rounds. This allows students who have been rejected

by their most preferred schools to move down their rank-order lists and potentially

displace previously matched students. This deferred acceptance incentivizes students

to provide truthful preferences and makes the DA mechanism strategy-proof.

The market design literature widely supports the use of the Deferred-Acceptance

(DA) mechanism due to its strategy-proofness and fairness (also known as no justified

envy, or stability).1 However, the DA mechanism may lead to efficiency loss, partic-

ularly when students have similar preferences. This is because students who are near

indifferent between schools may try a more competitive school first, forcing other stu-

dents who have a strong desire for that school to be excluded. This issue has been

investigated in various studies such as Miralles (2009), Abdulkadiroğlu et al. (2011),

Pathak and Sönmez (2008), and Featherstone and Niederle (2011).

In our view, what is commonly referred to as preferences in the standard model

are better understood as expectations. This is because families do not have firsthand

experience with different schools, as they do not regularly consume or purchase them.

To form an idea of what their actual preferences might be, families gather information

from various sources, such as school district websites, parent forums, and review and

rating websites such as GreatSchools.org, niche.com, or SchoolDigger.com. The aggre-

gation of available information – e.g., reading brochures, organizing internet forums,

and visiting open houses – into application decisions consumes a great deal of energy

and time in reality, so students have at best interim expectations of actual preferences

that reflect the perceived suitability of different schools.

The strength of the DA mechanism – strategy-proofness and fairness – remains

intact because students continue to have truth-telling incentives and no justified envy

with regard to interim expected preferences. However, it is important to reassess the

mechanism’s efficiency loss. Students and their families decide how much information to

gather and which aspects of the schools to investigate based on the expected quality and

the admission odds of the schools, considering the cost of obtaining this information.

For instance, they may opt to not seek information about a school or only gather

1This means that a school that a student prefers over the assigned match is only assigned to other students
who have higher priorities for that school.
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information about a school’s exceptional fit if the admission chance is low. Accordingly,

the decisions are influenced by the mechanism in use and the learning and reporting

strategies of other students. Thus, it is inaccurate to discuss the inefficiency of the

DA mechanism on the basis of interim expected preferences, when these expected

preferences are influenced by the mechanism in use.

We investigate a centralized school choice model where students incur a cost to

gather information about their ex-post preferences. We compare the efficiency loss of

the Deferred Acceptance (DA) mechanism with that of the Boston mechanism, taking

into account that any fixed mechanism creates a game in which students must make

decisions about their learning and reporting strategies. Our analysis highlights the

potential efficiency loss of the DA mechanism due to reduced information acquisition.2

We build a school choice model that is simple yet sufficient to demonstrate the

potential efficiency loss of the DA mechanism. The model consists of a population of

a unit mass of infinitesimal students and three schools: s (superior in expectation), a

(average), and b (below average). The match payoffs for students are ua = 1, ub = 0,

and us = v+θ, respectively. While v > 1/2 is fixed across students, θ is an idiosyncratic

preference shock distributed uniformly over [0, 1] independently across students. For

the purposes of illustration, let us assume that each school has a capacity of 1/3.

A given mechanism, Boston or DA, defines a Bayesian game in which each student

first acquires information about her unobservable preference shock and then submits

a rank-order list. We adopt the Rational Inattention (RI) information acquisition for

information gathering, first introduced by Sims (1998) and Sims (2003). The RI model

allows for adaptability in information acquisition, enabling students and families to

select not only the quantity of information they acquire but also the type of information.

The value of different forms of information can vary based on the mechanism, and

students and families must prioritize the information that is most critical to them to

reduce the cost of information acquisition.

First, we analyze a benchmark model in which students can obtain information

about their preference shocks at no cost, i.e., can observe their preference shocks.

Since min{ua, us} > ub with probability 1, we assume that students submit either sab

or asb. A majority of students will report sab rather than asb in either mechanism, as

a majority of them prefer school s over a (Pr[v + θ > 1] = v > 1/2). Since the DA

mechanism is strategy-proof, assuming there is no indifference (v + θ ̸= 1), a student

2At first glance, it might seem trivial that students acquire more information under the Boston mechanism
because applying for a competitive school first entails the risk of multiple rejections. However, this same
risk can also discourage students from gathering information, since they may choose not to apply to these
highly competitive schools.
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reports sab if and only if v + θ > 1. On the other hand, reporting sab in the Boston

mechanism is risky as a failure to match in the first round is likely to trigger another

rejection in the next round, resulting in a match with school b. Thus, a student will

only report sab if their preference type θ is significantly greater than 1− v (Lemma 2).

On the other hand, the DA mechanism does not discourage near-indifferent students

from reporting sab, leading to more homogeneous rank-order submissions. This causes

the mechanism to rely more heavily on random tie-breaking in assigning students to

schools, resulting in a larger number of near-indifferent students being matched with

the in-demand school s. As a result, the allocation produced by the DA mechanism is

less efficient than that of the Boston mechanism (Corollary 1).

Next, suppose that information acquisition is costly. A student’s rank-order sub-

mission is only partially influenced by her unobservable preference type. In either

mechanism, a student is more likely to receive a signal recommending the reporting

of sab when her preference type is higher. The optimal signal structure and cost-

justifying accuracy of the signals depend on the mechanism and the strategies of other

students (Lemma 3). We find the equilibrium learning and reporting strategies in both

the Boston and DA mechanisms (Proposition 1). Our equilibrium analysis indicates

that the DA mechanism continues to experience efficiency loss compared to the Boston

mechanism (Proposition 2 and Corollary 2), and this loss can become increasingly

significant as the marginal cost of obtaining information increases (Proposition 6).

The DA mechanism’s efficiency loss is due to the homogeneity of the rank-order

reports. The higher number of students reporting sab in the DA mechanism results

in an increased need for random tie-breaking to assign students to schools, leading to

greater inefficiency.

The homogeneity of rank-order reports under the DA mechanism is partly driven by

the strategy-proofness. A student wants to submit sab when her unobserved preference

type θ is above 1−v. Hence, when information acquisition is costly, a student’s optimal

information strategy would focus around 1 − v, learning whether the preference type

is above or below that value. If a student’s unobservable preference type is close to,

but greater than, 1− v, then they are more likely to report sab than asb. On the other

hand, in the Boston mechanism, a student with a similar preference type is likely to

submit asb because optimal information acquisition in the Boston mechanism focuses

on a cutoff point much higher than 1− v (Lemma 2).

Moreover, the homogeneity of rank-order reports is also intensified by the cost

of information acquisition. An increased reliance on random tie-breaking due to the

homogeneity of rank-order reports discourages the gathering of costly information.

This results in rank-order reports being more influenced by expected match payoffs
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(E[us] = v + 1
2 > ua = 1) and become even more homogeneous (Proposition 4). This

creates a self-reinforcing cycle between homogeneous rank-order reports and reduced

information acquisition, further exacerbating the loss of efficiency in the DA mecha-

nism. A lower marginal cost of information acquisition can mitigate the reinforcing

cycle and ultimately the efficiency loss by the DA mechanism.

Finally, we would like to note that the school choice model in this study is styl-

ized and not intended to accurately reflect actual school choice environments. The

purpose of using this model is to demonstrate the potential for efficiency loss in the

DA mechanism. It is worth mentioning that the DA mechanism is not necessarily less

efficient than the Boston mechanism in more complex school choice environments, as

indicated by studies such as (Troyan, 2012; Calsamiglia and Miralles, 2020).3 While a

comprehensive school choice environment is desirable, our focus is to create a simple

one to clearly demonstrate the logic behind the efficiency loss of the DA mechanism.

The possibility of efficiency loss is likely to persist and play a role in the design of

real-life school choice programs.

1.1 Related Literature

Chen and He (2017) also investigates the acquisition of information in the context of

school choice and compares the welfare outcomes under different mechanisms. Chen

and He (2017)’s study considers a general school choice model with preference learning,

in which students first choose to learn their ordinal preferences and then their cardinal

utilities, each at a cost. In contrast, our approach focuses on a simpler school choice

environment to demonstrate the efficiency loss in the DA mechanism. The simplicity

of our model enables us to consider a flexible information acquisition model and offers

comparative statistics through the use of a single information cost parameter.

Other studies have also explored the significance of preference learning in matching.

Immorlica et al. (2018) examines the design of a stable outcome by considering a

process in which each student sequentially selects a school to investigate, and defines

stability in terms of matching outcomes and students’ beliefs about preferences. Bade

(2015) considers the scenario of heterogeneous learning costs among students and finds

that prioritizing agents with higher information costs through a serial dictatorship

approach can lead to increased information acquisition and enhanced efficiency. Harless

and Manjunath (2018) examines the student’s choice of which school to learn about,

3If different top schools prioritize students differently, such as based on neighborhood criteria, then the
fear of being matched with a subpar school through the Boston mechanism may push these students towards
their safer options, such as their neighborhood schools, rather than exploring potential exchanges that would
enhance their welfare.
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while Kloosterman and Troyan (2018) investigates the learning process of each student

regarding others’ preferences.

We study a mechanism design problem with RI agents, emphasizing how the mech-

anism being used affects the qualitative and quantitative natures of the information

acquired by agents. Other papers sharing this scheme include, but are not limited to:

Yang (2019) and Li and Yang (2020) on contract designs with an RI agent; and Bloedel

and Segal (2018) on information design with an RI agent. We use mutual information

to measure the cost of information acquisition. Shannon (1948), Cover and Thomas

(2012) and Caplin and Dean (2015) provide information-theoretic, coding-theoretic,

and revealed-preference foundations for this modeling choice, respectively. The grow-

ing literature on RI is recently surveyed by Caplin (2016) and Mackowiak et al. (2018).

2 Model

A unit mass of students must be assigned to three schools: s, which is expected to

be superior, a, which is average, and b, which is below average. Each school j has

a capacity λj > 0 such that
∑

j∈{s,a,b} λj = 1. The preferences of the students are

represented by cardinal utilities, with us = v + θ, ua = 1, and ub = 0. The constant

v ∈ (0, 1) is common to all students, while θ is a random variable that is uniformly

distributed on [0, 1], and is independently determined for each student. The realization

of θ captures each student’s individual preference shock between schools s and a. A

student with θ > 1 − v would have a higher match payoff from attending school s

compared to school a, and the value of v represents the fraction of students with such

ex-post preferences. Regardless of the realization of preference shocks, school b is

always the least preferred option.

A matching mechanism requests each student to provide a rank-order list that is

either sab or asb. School b is always placed at the bottom of the list because it is

the least preferred match. The mechanism then assigns students to schools based on

the populations of students who report sab and asb, while respecting the capacity con-

straint. We consider the Immediate-Acceptance (also known as the Boston) mechanism

and the Deferred-Acceptance (DA) mechanism, which we will explain in more detail

later.

Before participating in a given mechanism, students can acquire information about

their unobservable preference shocks θ at a cost. The signal structure Π : [0, 1] → ∆Z
captures the information acquired by a student. Here, Π (· | θ), ∀θ ∈ [0, 1], specifies a

probability distribution over a finite set Z of signal realizations conditional on the true
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preference shock being θ. For each signal realization z ∈ Z, the student submits a rank-

order list that determines her matching outcome. The cost of information acquisition

is µ · I (Π), where µ ≥ 0 is a marginal information cost, and I (Π) is the mutual

information between the preference shock and the signals generated by Π. Specifically,

I (Π) = H (θ) − EΠ [H (θ | z)], where H(·) denotes the Shannon entropy of a random

variable.

It is without loss of generality to consider signal structures that recommend students

to submit either sab or asb, and students strictly follow this recommendation (Matějka

and McKay, 2015).4 Accordingly, we represent the signal acquired by a student by an

integrable function m : [0, 1] → [0, 1], where each m (θ) specifies the probability that

the student is recommended to submit sab when her unobservable preference shock is

θ ∈ [0, 1]. Define m ≡
∫ 1
0 m(θ)dθ as the average probability of the recommendation to

submit sab. The information cost is then µ · I(m), where µ ≥ 0 and

I(m) =

∫ 1

0
[m(θ) lnm(θ) + (1−m(θ)) ln(1−m(θ))]dθ

−m lnm− (1−m) ln(1−m). (1)

2.1 Matching mechanisms

We examine two mechanisms: Immediate-Acceptance (also known as Boston) and

Deferred-Acceptance (DA). We assume a single tie-breaking method where student

priorities are randomly assigned from a uniform distribution over [0, 1] at the beginning

of each mechanism and are used by all schools. A student with a higher priority score is

ranked higher, and students do not observe their priorities when submitting rank-order

lists.

Boston mechanism assigns students to schools in multiple rounds. In each round,

unmatched students apply to top-choice schools that have not rejected them, and

schools keep accepting students based on their priorities until their capacities are

reached. The rounds go as follows in our school choice setup. Let r ∈ [0, 1] denote the

proportion of students who submit sab, and suppose the fraction is large r ≥ 1−λa. In

the first round, school s receives more applications than its capacity (r ≥ 1−λa > λs),

so it accepts λs students with the highest priorities out of the r students and rejects

4The focus on finite signals is not restrictive. The signal structure can be simplified by merging signal
realizations that induce sab into a single recommendation and those that induce asb into another recom-
mendation. This results in the same matching payoffs but with lower acquisition costs since the new signal
structure is less Blackwell informative. Students must strictly prefer to follow the recommendations they
receive, and if they are indifferent, merging the recommendations still saves on the cost of acquiring infor-
mation.
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the remaining r − λs. Meanwhile, all students who submitted asb match with school

a. School s has reached its capacity, whereas school a still has openings λa − (1 − r).

In the second round, students who submitted sab but were rejected by school s apply

to school a. Only λa − (1 − r) students with the highest priorities are accepted when

school a has reached its capacity. The remaining students match with b in the third

round. Table 1 reports the final allocation of students to schools, including other cases

whose derivations are omitted for brevity.

s a b

sab λs λa − (1− r) λb

asb 0 1− r 0

(a) if r ≥ 1− λa

s a b

sab λs 0 r − λs

asb 0 λa (1− r)− λa

(b) if λs ≤ r ≤ 1− λa

s a b

sab r 0 0

asb λs − r λa λb

(c) if r ≤ λs

Table 1: The final allocation of students to schools under the Boston mechanism. Each
panel shows the number of students who submitted the rank-order lists in the row and were
matched with the schools in the column.

The DA mechanism is similar to the Boston mechanism, but it defers the assign-

ments in each round until the end of all rounds. The mechanism is also characterized

by market-clearing priority level cutoffs (Azevedo and Leshno, 2016). Market-clearing

priority cutoffs ps, pa, pb ∈ [0, 1] are such that assigning each student to her top choice

among the schools that have cutoffs lower than the student’s priority ranking exactly

meets the schools’ capacities. It is known that market-clearing cutoffs uniquely exist.

In our setup, every student is guaranteed to match at least with school b, so pb = 0.

If a large fraction r ≥ λs
λs+λa

of students report sab, that is, school s receives more

applications than school a relative to their capacities, then the market-clearing cutoffs

must satisfy ps ≥ pa > pb = 0.

The assignment of students through the DA mechanism is determined as follows.

For students who report sab, those whose priority rankings are higher than ps are

assigned to school s, while those with priority rankings between pa and ps or below

pa are assigned to school a or b, respectively. For students who report asb, their

assignments to either school a or b depend on whether their priority rankings are

above or below the cutoff pa. This assignment by priority cutoffs is:

s a b

sab (1− ps)r (ps − pa)r par

asb 0 (1− pa)(1− r) pa(1− r)

.

The cutoffs are market-clearing if (1− ps)r = λs and (ps − pa)r+ (1− pa)(1− r) = λa,

subject to the constraint ps ≥ pa > pb = 0. By replacing the priority cutoffs with
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market-clearing values, we obtain the student assignment, which is shown in Panel (a)

of Table 2. The other case is not shown due to brevity.5

s a b

sab λs rλa − (1− r)λs λbr

asb 0 (1− r)(λs + λa) λb(1− r)

(a) if r ≥ λs
λs+λa

s a b

sab r(λs + λa) 0 rλb

asb (1− r)λs − rλa λa (1− r)λb

(b) if r < λs
λs+λa

Table 2: The final allocation of students to schools under the DA mechanism. Each panel
shows the number of students who submitted the rank-order list in the row and were matched
with the schools in the column.

2.2 Information acquisition

Each mechanism Γ ∈ {Boston,DA} defines a game in which a student i must incur a

cost to acquire information about her unobservable preference shock θ. After acquiring

information, the student submits a rank-order list sab or asb to the mechanism.

A student’s problem is defined as follows. For any given mechanism Γ and a fraction

r of students that report sab, UΓ
sab(θ; r) and UΓ

asb(θ; r) denote the expected match

payoffs that a student with a preference type θ obtains by choosing a rank-order list

sab and asb, respectively. Let ∆Γ(θ; r) ≡ UΓ
sab(θ; r)−UΓ

asb(θ; r). Then, a student solves

max
m:[0,1]→[0,1]

∫ 1

0
m(θ)∆Γ(θ; r)dθ − µI(m). (2)

An optimal signal structure represents the optimal decision of what and how much

a student should learn about her preference type. In Figure 1, we illustrate an optimal

signal structure when ∆(θ) = θ − x for x ∈ (0, 1). The optimal signal structure

m(θ) increases with θ because the payoff gain ∆(θ) by switching from asb to sab

increases with θ. The agent aims to choose sab if and only if her preference type θ

is above x. Therefore, the agent chooses to learn whether her preference shock θ is

5The Top-Trading-Cycles (TTC) mechanism with a random endowment is equivalent to the DA in our
setting. For any proportion r of students who report sab, the initial assignment of students is

s a b
sab rλs rλa rλb

asb (1− r)λs (1− r)λa (1− r)λb

.

Then, students who reported sab but are assigned to school a trade with those who reported asb but are
assigned to school s. The resulting assignment is the same as shown in Panel (a) of Table 2. For a general
environment with a continuum of students, see Leshno and Lo (2021) for a characterization of the Top-
Trading-Cycles (TTC) mechanism.
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(b) A decision of how much to learn (x = 1/2).

Figure 1: An optimal information acquisition strategy when ∆(θ) = θ − x.

above or below the option value x, as shown in Panel (a). If the marginal cost of

information µ decreases, the agent chooses to acquire more information, resulting in

the recommendation by m(θ) responding more precisely to θ, as shown in Panel (b).

3 Equilibrium Analysis

A game is defined by any fixed mechanism Γ ∈ {Boston,DA}. We find a symmetric

Nash equilibrium mΓ in this game. The proportion of students reporting sab in mΓ is

rΓ ≡
∫
mΓ(θ)dθ. Conversely, mΓ is the unique solution to the information acquisition

problem (Equation 2) for each student given the fraction rΓ of other students who

report sab. Therefore, it is sufficient to find an equilibrium proportion rΓ of students

reporting sab.

Our focus is on parameter values that lead to a higher proportion of students sub-

mitting sab than asb in equilibrium, relative to the schools’ capacities. Specifically,

given a set of capacity profiles (λs, λa, λb) and marginal information cost µ, we assume

a sufficiently high constant v to ensure that the equilibrium fraction of students submit-

ting sab is greater than r̂ ≡ λs
λs+λa

in both mechanisms.6 Consequently, in equilibrium,

school s is more competitive than school a: the Boston mechanism fills up school s no

later than school a, and under the DA mechanism, the priority cutoff for school s is

weakly higher than for school a.

For the Boston mechanism, we consider two cases: r ≥ 1−λa (Panel (a) of Table 1)

6When the marginal cost of information µ is very high, assuming v > 1
2 is sufficient because most students

will choose sab based on the ex-ante utilities, E[us] = v + E[θ] > ua. However, if the marginal cost µ is
low, the condition for v depends on the schools’ capacities. A school with higher quality for the majority of
students, Pr[v + θ > ua] = v > 1

2 , can be less selective if its capacity is very large.
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and r̂ < r < 1 − λa (Panel (b) of Table 1). When r ≥ 1 − λa, if a student submits

sab, the mechanism assigns her to schools s, a, and b, with probabilities λs
r ,

λa−(1−r)
r ,

and λb
r , respectively. If a student submits asb, the mechanism assigns her to school a.

We conduct a similar analysis for the case of r̂ < r < 1 − λa. The expected gain in

match payoffs ∆B(θ; r) for any fraction r > r̂ of students who submit sab, given an

unobservable preference type θ, is

∆B(θ; r) =
λs(v + θ)

r
−min

{
λa

1− r
,
1− λa

r

}
, ∀r > r̂. (3)

For the DA mechanism (Panel (a) of Table 2), if a student reports sab, the mech-

anism assigns her to schools s, a, and b, with probabilities λs
r , λa − (1−r)λs

r , and λb,

respectively. If the student reports asb instead, the probabilities become 0, λs + λa,

and λb. This implies that

∆D(θ; r) =

(
λs

r
(v + θ) + λa −

1− r

r
λs

)
− (λs + λa)

=
λs(v + θ)

r
− λs

r
, ∀r > r̂. (4)

Lemma 1. For any r > r̂ and θ ∈ [0, 1], ∆D(θ; r) > ∆B(θ; r).

Proof. ∆D − ∆B = min
{

λa
1−r ,

1−λa
r

}
− λs

r . Clearly, 1−λa
r = λb+λs

r > λs
r . Moreover,

r > r̂ implies λa
1−r > λs

r .

The intuition behind Lemma 1 is that when a large proportion of students apply

to school s first (r > r̂) in both mechanisms, submitting sab to the Boston mechanism

involves a higher risk for a student. This is because failing to match with the top-choice

school s in the first round is likely to lead to another rejection in the second round,

potentially resulting in a final match with the worst school b. In contrast, under the

DA mechanism, the risk of matching with school b does not increase from choosing a

rank-order list sab.

3.1 A benchmark case of free information acquisition.

We study the case of free information acquisition, where µ = 0. This corresponds to

a standard model where a student knows her own preferences. For any mechanism

Γ ∈ {Boston,DA}, an equilibrium strategy must be

mΓ(θ) =

{
1 if θ > θΓ

0 if θ < θΓ.
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with a mechanism-dependent threshold θΓ. We omit the value at threshold mΓ(θΓ)

since any value in [0, 1] is consistent with our equilibrium analysis. For the DA mech-

anism with single tie-breaking, a (strict) dominant strategy for a student is to use the

threshold θD = 1− v. The proportion of students who report sab is rD = 1− θD = v,

which is assumed to be larger than r̂ = λs
λs+λa

. For the Boston mechanism, the equi-

librium threshold θB is the unique solution of ∆B(θ; rB) = 0, where rB = 1− θ > r̂.7

According to Lemma 1, a student will submit sab only if her preference shock θ is

significantly greater than θD = 1− v.

Lemma 2. If v > r̂, then θB > θD.

Proof. By Lemma 1, if r > r̂, then ∆B(θD; r) < ∆D(θD; r) = 0, where θD = 1 − v.

Since ∆B(θ; r) is strictly increasing in θ, the unique solution θB of ∆B(θ; rB) = 0 where

rB = 1− θ > r̂ must satisfy θB > θD.

Under the Boston mechanism, students who are near-indifferent between schools s

and a due to preference shocks θ ∈ (θD, θB) are deterred from submitting a rank-order

list sab due to the higher risk of receiving multiple rejections. However, such students

submit sab since the DA mechanism is strategyproof. As a result, in the equilibrium of

the DA mechanism, a larger proportion of students choose a more competitive school

s as their top choice, resulting in more homogeneous rank order reports. These homo-

geneous reports cause the DA mechanism to rely on random tie-breaking to a greater

extent, which can lead to an efficiency loss.

We define the efficiency of an allocation as follows. Every allocation assigns students

to schools a and b up to their capacity, and all students assigned to either school receive

the same match payoffs, ua = 1 or ub = 0. Therefore, the efficiency of an allocation

can be evaluated based on the students assigned to school s. For any mechanism Γ ∈
Boston,DA, a student with a preference shock θ is assigned to school s with probability

gΓ(θ) ≡ mΓ(θ)λs

rΓ
, where mΓ(θ) represents the probability that a student submits a

rank-order list sab given the preference shock θ, and λs

rΓ
represents the probability of

matching with school s given that the student submits a rank-order list. In equilibrium,

since school s is more competitive than school a (rΓ > r̂), a student can only match

with school s if she submits a rank-order list sab. The function gΓ(θ) represents the

density of preference shock θ among students assigned to school s in equilibrium, and

it satisfies the condition that
∫
gΓ(θ)dθ = λs, where λs is the number of seats available

7A unique solution θB satisfies either (i) θB ≤ λa and λs(v + θB) = 1− λa, or (ii) λa ≤ θB ≤ 1− λs and
λs(v+θB)

1−θB = λa

θB .
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at school s. For each mechanism Γ ∈ {Boston,DA}, the equilibrium allocation is

gΓ(θ) ≡

{
λs

1−θΓ
if θ > θΓ,

0 if θ < θΓ.

We say that an allocation g is more efficient than allocation g′ if g first-order

dominates g′, that is,
∫ θ
0 g(θ)dθ ≤

∫ θ
0 g′(θ)dθ for every θ ∈ (0, 1), with strict inequality

for at least one θ ∈ (0, 1).

Corollary 1. In the case of free information acquisition, the DA mechanism is less

efficient than the Boston mechanism.

The proof is straightforward from Lemma 2, which establishes that θB > θD. Under

the Boston mechanism, students with higher preference shocks apply for school s, and

each such student has a higher chance of matching with school s.

3.2 Equilibrium under costly information acquisition

We continue to consider parameter values such that, for each mechanism Γ ∈ {Boston,DA},
a symmetric Nash equilibriummΓ(θ) satisfies rΓ ≡

∫ 1
0 mΓ(θ)dθ ∈ (r̂, 1). In other words,

the value of v is sufficiently high to make school s more competitive than school a, but

not so high that an interior equilibrium arises.8

To find an interior equilibrium of any fixed mechanism Γ ∈ {Boston,DA}, we use the
fact that a student’s optimal strategy when a proportion rΓ of other students report

sab is a solution to the information acquisition problem (Equation 2). An interior

solution satisfies the first-order condition, as shown in Yang (2015):

∆Γ(θ; rΓ) = µ ·
[
ln

(
m(θ)

1−m(θ)

)
− ln

(
m

1−m

)]
, ∀θ ∈ [0, 1], (5)

where m ≡
∫
m(θ)dθ ∈ (0, 1). Accordingly, if m(·) is an interior symmetric Nash

equilibrium, then by substituting m with rΓ in (5),

m(θ) =

(
1 +

1− rΓ

rΓ
exp

(
−∆Γ(θ; rΓ)

µ

))−1

, ∀θ ∈ [0, 1]. (6)

Finally, the consistency rΓ =
∫
m(θ)dθ implies the following equilibrium condition:

8We exclude the case of a non-interior equilibrium where v is very close to 1, as in that case, under the DA
mechanism, students do not acquire any information, and the equilibrium allocation becomes independent
of their preference types.
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Lemma 3. An information acquisition strategy m(·) with m ∈ (r̂, 1) is a symmetric

Nash equilibrium under a mechanism Γ ∈ {Boston,DA} if and only if it satisfies (6),

where rΓ ∈ (r̂, 1) is a solution to

exp

(
λs

µ

)
= 1 +

exp
(
λs
rµ

)
− 1

1−r
r exp

(
−∆Γ(0;r)

µ

)
+ 1

. (7)

Therefore, it is sufficient to find a proportion rΓ ∈ (r̂, 1) of students who submit

the rank-order list sab in equilibrium. A careful inspection of (7) yields:

Proposition 1. For any µ > 0,

1. there exist v, v ∈ (0, 1) with v < v such that v ∈ (v, v) if and only if an interior

equilibrium of the DA mechanism (uniquely) exists with rD ∈ (r̂, 1), and

2. if the DA mechanism has an interior equilibrium with rD ∈ (r̂, 1), then the Boston

mechanism also has a (unique) interior equilibrium with rB ∈ (r̂, rD).

The proof of Proposition 1 is tedious but straightforward. The left-hand side (LHS)

of (7) is constant at exp(λs
µ ). If the DA mechanism is given, the right-hand side (RHS)

equals the LHS at r = 1 and increases indefinitely as r approaches 0. The RHS is

shown to be a strictly single-dipped function.9 The intermediate value theorem implies

that a unique solution of (7) exists in (0, 1]. Then, since the RHS is strictly increasing

in v for each fixed r < 1, we can find the bounds of v that ensure the solution is

in (r̂, 1). For the Boston mechanism, note that ∆D(0, r) > ∆B(0, r) for every r > r̂

(Lemma 1). So, the RHS of (7) under the Boston mechanism is smaller than under

the DA for every r ∈ (r̂, 1), and the two coincide at r = r̂ and r = 1. It follows that a

solution rB > r̂ under the Boston mechanism is smaller than rD.

3.3 The DA mechanism’s efficiency loss

As mentioned earlier, we measure allocation efficiency by examining the distribution

of preference shocks among students assigned to school s, denoted by gΓ(θ) for each

mechanism Γ ∈ {Boston,DA}.

Proposition 2. If an equilibrium with rD ∈ (r̂, 1) exists for the DA mechanism (which

implies the existence of equilibrium with rB ∈ (r̂, rD) for the Boston mechanism), then

gB is single-crossing gD from below.10

9A single-dipped function is the −1 multiple of a single-peaked function.
10This means that for all θ′ < θ′′, if gB(θ′) ≥ gD(θ′), then gB(θ′′) > gB(θ′′).
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Corollary 2. The DA mechanism has a lower allocation efficiency than the Boston

mechanism: ∫ θ

0
gD(θ)dθ >

∫ θ

0
gB(θ)dθ, ∀θ ∈ (0, 1).

Figure 2 illustrates Proposition 2 and Corollary 2 for the parameter values v = 0.6,

µ = 0.1, and λj = 1/3 for j ∈ {s, a, b}. The black horizontal line at λs represents

a purely random assignment of students to school s. The red solid line represents

the allocation of school s in the equilibrium of the DA mechanism (gD). The graph

intersects the line at λs when a preference shock causes the match payoff from schools

s and a to become identical (θ = 1 − v), such that a student is indifferent between

reporting sab and asb. The blue dashed line represents the allocation of school s in

the equilibrium of the Boston mechanism (gB). A student who submits sab to the

Boston mechanism bears a higher risk of matching badly with school b. Therefore, a

higher preference shock θ′ > 1 − v is required for a student to be indifferent between

rank order lists sab and asb. The graph of gB is single-crossing gD from below, which

implies the inefficiency of the DA mechanism.

0.2 0.4 0.6 0.8 1.0
θ

0.1

0.2

0.3

0.4

0.5

0.6

Matching with s

-.
DA

Boston

!′
1-v

Figure 2: The allocation probabilities of matching with school s in the equilibrium of the
DA and Boston mechanisms, with parameter values v = 0.6, µ = 0.1, and λj = 1/3 for
j ∈ {s, a, b}.

We examine the reasons for the DA mechanism’s efficiency loss compared to the

Boston mechanism, focusing on the role of homogeneous rank-order reports. The

benchmark model, which assumes free information acquisition, showed that students

are inclined to submit more uniform rank-order lists to the DA mechanism. This

tendency increases the mechanism’s dependence on tie-breaking, resulting in reduced

disparities in the expected match payoffs across different rank-order choices. As a con-

sequence, students are discouraged from investing in information acquisition when the
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costs associated with such efforts increase. As students acquire less information, their

rank-order reports become less responsive to preference shocks, resulting in greater

uniformity. Consequently, the incentives for information acquisition diminish further,

exacerbating the cycle.

To demonstrate the feedback loop between homogeneous rank-order reports and re-

duced information acquisition, we investigate how students’ behavior evolves gradually

in response to a switch from the Boston to the DA mechanism. We assume appropriate

parameter values to ensure that the equilibrium proportions of students who report the

sab list to the DA and Boston mechanisms (rD and rB) fall within the interval (r̂, 1) (as

in Proposition 1). Starting from the Boston mechanism equilibrium, we examine the

efficiency of the allocation resulting from a gradual transition to the DA mechanism,

with students’ beliefs about others’ strategies held fixed at rB ∈ (r̂, 1). Specifically,

for any r ∈ [rB, rD], we define mH(·; r, µ) as the students’ interior optimal strategy

when they believe that an r proportion of their peers will report the sab list to the

DA mechanism. We also define mH(r, µ) ≡
∫
mH(θ; r, µ)dθ. Finally, we measure the

efficiency of the resulting allocation using gH(θ; r, µ) ≡ mH(θ; r, µ) λs

mH(r,µ)
.

To begin, we analyze how students respond to the transition from the Boston to

DA mechanism, while holding their belief about others’ strategies fixed at rB.

Proposition 3. Take v ∈ (v, v) such that the DA and the Boston mechanisms have

interior equilibria with r̂ < rB < rD < 1. Let mH(·; rB, µ) be the optimal strategy when

the mechanism changes from Boston to DA while the students’ belief on the proportion

of others reporting sab is fixed rB. Then, (i) mH(rB, µ) > rB, and (ii) gB is single

crossing gH(·; rB, µ) from below.

To understand the rationale behind Proposition 3, consider the mechanism transi-

tions from Boston to DA, while the students’ belief about others’ strategies is fixed at

rB. This fixed belief means that the chance of matching with school s given the choice

of rank-order report sab is believed to remain unchanged. However, the switch to the

DA mechanism eliminates the risk of a bad match resulting from submitting sab.

Next, we study the subsequent adjustments in the students’ strategy.

Proposition 4. Suppose µ < λs(1 − v). If r1, r2 ∈ (rB, rD) with r1 < r2, then

rB < mH(r1, µ) < mH(r2, µ) < rD, and the allocation gH(·; r1, µ) is single-crossing

gH(·; r2, µ) from below.

The assumption µ < λs(1− v) is to ensure that an interior optimal strategy under

the DA mechanism mH(r, µ) exists for any r ∈ (r̂, 1).
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For the first part of Proposition 4, note that the given mechanism is DA, but

the belief on others’ strategies r is greater than rD. Since the rank-order choices

are believed to be more homogeneous (r > rD > r̂), the mechanism is believed to

rely on random tie-breaking to a greater degree. In response, students acquire less

information, and their rank-order reports become less sensitive to preference shocks and

more homogeneous, leading to a reduction in the incentives for information acquisition.

A similar intuition applies to the second part.

1%
DA

Boston

!′
1-v

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

0.6

Matching with s

Figure 3: Allocation efficiency declines after a switch from the Boston mechanism to the
DA followed by best-response adjustments, with parameter values of v = 0.6, µ = 0.01, and
λj = 1/3 for j ∈ {s, a, b}.

Figure 3 illustrates the implications of Proposition 3 and Proposition 4 in terms

of allocation efficiency. The blue dashed line represents the allocation in the Boston

mechanism equilibrium. When the mechanism changes to the DA, but students best

respond to rB, their rank-order choices become more homogeneous, especially when

their unobservable preference types are near 1 − v. The following transitions, leading

ultimately to the DA equilibrium, drawn in red solid line, represent the reinforcing

cycle between more homogeneous rank-order choices and less information acquisition.

In the sequence of students’ behavior adjustments, the allocations become increasingly

inefficient.

Finally, the self-reinforcing relationship between uniform rank-order reports and

decreased information acquisition is intensified by the augmented expenses associated

with obtaining information.

Proposition 5. If µ1 < µ2 < λs(1− v), then mH(r, µ1) < mH(r, µ2), and gH(·; r, µ1)
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is single crossing gH(·; r, µ2) from below.11

3.4 Comparative statics in µ.

To compare the efficiency loss of the DA mechanism to the Boston mechanism, we ini-

tially used first-order dominance criteria to analyze the preference shock distributions of

students matched with school s. However, this approach is unsuitable for comparative

statics analysis. To overcome this challenge, we could employ a real-valued efficiency

measure such as the average efficiency WΓ ≡
∫ 1
0 θgΓ(θ)dθ

λs
across different mechanisms.12

Nevertheless, calculating this average efficiency is challenging.

Alternatively, we can observe that higher levels of homogeneity in rank-order reports

(rD, rB > r̂) lead to the DA mechanism’s efficiency loss, discouraging students from

acquiring information at a cost. Therefore, for a comparative statics analysis, we will

consider the real-valued measure of homogeneity.

Proposition 6. Assume that v > 1/2 and λs ≤ λa, which implies that school s is

always more competitive than school a in any mechanism and for any µ ≥ 0.13

1. There exists µ > 0 such that, as µ increases from 0 to µ, the equilibrium fraction

rD under the DA mechanism increases from v to 1.

2. If rBµ and rBµ′ are the equilibrium fractions of the Boston mechanism for µ and

µ′ with µ < µ′, respectively, and rBµ > 1
2(≥ r̂), then rBµ < rBµ′. In addition, if

v ≤ 1
2 + λb

λs
, then the equilibrium fraction rBµ of the Boston mechanism for any µ

is bounded above by max{1
2 , 1− λa}.

As µ increases, the equilibrium proportion of students who submit sab under the

Deferred Acceptance (DA) mechanism, denoted by rD, increases and eventually con-

verges to 1. In contrast, the proportion of students who submit sab under the Boston

mechanism, denoted by rB, may also increase with µ, but it remains relatively sta-

ble, provided that the capacity of a selective school s is sufficiently smaller than the

capacity of school b. More specifically, this occurs when v ≤ 1
2 + λb

λs
.

To demonstrate Proposition 6 and its implications for the efficiency loss of the DA

mechanism, we provide an illustrative numerical example. Consider a scenario with

equal capacities (λs = λa = λb = 1/3) and two different values of v: v = 0.6 and

11Similar to Proposition 4, we assume µi < λs(1− v), i ∈ {1, 2}, to ensure that an interior best response
under the DA mechanism exists for any r ∈ (r̂, 1).

12We divide by λs because the mass of students who match with school s is λs.
13This can be shown by observing that school s is more competitive both in expected match payoffs, i.e.,

E[us] > v + 1
2 > ua = 1, and in ex-post preferences, i.e., P [us > ua] = v, relative to the schools’ capacities

v > r̂ = λs

λs+λa
.
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v = 0.7. We then increase the value of µ from 0, ensuring that an interior equilibrium

exists in both the DA and Boston mechanisms.
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(c) The DA mechanism’s efficiency loss.

Figure 4: As µ increases, the homogeneity of rank-order reports to the DA mechanism
increases rapidly, and results in an increasing efficiency loss.

In Figure 4, Panels (a) and (b) illustrate that the proportion of students who report

sab in the DA mechanism rapidly approaches 1 as the cost of information acquisition,

µ, increases. However, the proportion of students reporting sab in the Boston mecha-

nism remains low and relatively stable. This finding suggests a potential for significant

efficiency losses under the DA mechanism, particularly as the cost of information ac-

quisition increases. Indeed, Panel (c) of Figure 4 shows that the difference in average

efficiency WB −WD becomes more substantial as µ increases.

4 Conclusion

We analyze a school choice problem where students gather information on their pref-

erences before submitting rank-order lists to a mechanism. We compare two widely
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used mechanisms: DA and Boston. The DA mechanism results in more uniform rank-

order submissions, causing it to rely more on random tie-breaking than the Boston

mechanism. As a result, students have less motivation to collect costly information,

leading to further homogeneity in their rank-order submissions and greater efficiency

loss. These characteristics, which result in the DA mechanism’s efficiency loss, are

amplified when the cost of information acquisition rises.

A Appendix

A.1 Proof of Lemma 3

For a given mechanism Γ ∈ {Boston,DA}, the equilibrium consistency rΓ =
∫ 1
0 mΓ(θ)dθ,

where mΓ satisfies (6), implies that rΓ is a solution to the following equation:

r =

∫ 1

0

(
1 +

1− r

r
exp

(
−∆Γ(θ; r)

µ

))−1

dθ.

Since ∆Γ(θ; r) = ∆Γ(0; r) − λsθ
r (as shown in (3) and (4)), we can rewrite the above

equation as follows:

r =

∫ 1

0

(
1 +

1− r

r
exp

(
−∆Γ(0; r)

µ

)
exp

(
λsθ

rµ

))−1

dθ

=
rµ

λs
log

[
1− r

r
exp

(
−∆Γ(0; r)

µ

)
+ exp

(
λsθ

rµ

)]∣∣∣∣1
0

.

By canceling out r and taking the exponential of each side, we obtain (7).

A.2 Proof of Proposition 1

A.2.1 Proof for the DA mechanism

Given any µ > 0, we can determine the upper and lower bounds v and v, respectively,

such that v ∈ (v, v) if and only if there exists a solution r to the equilibrium condition

(7) under the DA mechanism in the interval (r̂, 1).

First, we find the upper bound v. Let z ≡ λs
µ , w ≡ λa

µ , and x ≡ 1
r ∈ [1,∞). Then,

the equilibrium condition (7) becomes:

ez = 1 +
ezx − 1

(x− 1)ezx(1−v) + 1
⇐⇒ f(x, v) ≡ ezx − 1

ez − 1
− (x− 1)ezx(1−v) = 1.
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For any v, we have f(1; v) = 1 and limx→∞ f(x, v) = ∞. Moreover, we can show that:

∂f(x, v)

∂x
< 0 ⇐⇒ zezx

ez − 1
− ezx(1−v) − (x− 1)ezx(1−v)z(1− v) < 0

⇐⇒ g(x, v) ≡ zezxv

ez − 1
− 1− (x− 1)z(1− v) < 0. (8)

Let v be such that:

g(1, v) = 0 ⇐⇒ zezv = ez − 1 ⇐⇒ v =
1

z
log

(
ez − 1

z

)
. (9)

We can verify that v ∈ (1/2, 1) and is strictly increasing in z. We will use these

properties later.

If v < v, then g(1, v) < 0 because the function g is strictly increasing in v and

g(1, v) = 0. Moreover, g(x, v) is strictly convex in x, and limx→∞ g(x, v) = ∞. Thus,

if v < v, then as x increases from 1 to ∞, the function g(x, v) changes sign exactly

once from strictly negative to strictly positive. This implies that f ′(x, v) < 0 at x = 1

and f(x, v) is a strictly single-dipped function of x. Thus, a unique solution x∗ > 1 of

f(x; v) = 1 exists (hence, a unique solution r∗ = 1
x∗ of (7) exists in the interval (0, 1)).

In contrast, if v ≥ v, then g(1; v) ≥ 0. Moreover, for any x > 1, we have

∂g(x, v)

∂x
>

∂g(1, v)

∂x
≥ (zv)

zezv

ez − 1
− z(1− v) ≥ z(2v − 1) ≥ 0, (10)

where the last two inequalities follow from (9) and the fact that v ≥ 1/2, respectively.

Thus, if v ≥ v, then g(x; v) > 0 for every x > 1, and there exists no solution x > 1 to

f(x; v) = 1.

Second, we find the lower bound v. Let x̂ ≡ 1
r̂ = λs+λa

λs
> 1 and define v such that

f(x̂; v) = 1 ⇐⇒ ez+w − 1

ez − 1
− w

z
e(z+w)(1−v) = 1 ⇐⇒ e(z+w)v =

w

1− e−w

ez − 1

z

⇐⇒ v =
1

z + w
log

(
w

1− e−w

ez − 1

z

)
.

We previously defined v such that f(1; v) = 1. Moreover, ∂f(x,v)
∂x > 0 for every x > 1

because (8) holds for the opposite inequalities, and g(x, v) > 0 for every x > 1, as we

observed after (10). Thus, f(x̂, v) > 1 = f(x̂, v), which implies v > v.

We previously proved that v < v if and only if a unique solution x∗ of f(x, v) = 1

is greater than 1 (i.e., a unique equilibrium proportion r∗ < 1). The function f(x, v)

is strictly and continuously increasing in v for every x > 1. Therefore, the unique

solution x∗ is in (1, x̂) (i.e., r∗ ∈ (r̂, 1)) if and only if v ∈ (v, v).
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A.2.2 Proof for the Boston mechanism

Suppose that the DA mechanism has an interior equilibrium with rD ∈ (r̂, 1), i.e.,

v ∈ (v, v). Then, rD is the unique solution of (7) for the DA mechanism in the interval

(r̂, 1).

Note that r > r̂ if and only if

∆D(0; r)−∆B(0; r) = min

{
λa

1− r
,
1− λa

r

}
− λs

r
> 0

When r < r̂ (or, r = r̂), the opposite strict inequality (or, the equality) holds. There-

fore, the right-hand side of (7) under the Boston mechanism is smaller than, larger

than, or equal to the right-hand side under the DA mechanism, when r > r̂, r < r̂,

or r = r̂, respectively. As a result, an interior equilibrium of the Boston mechanism

exists with rB ∈ (r̂, rD) by the Intermediate Value Theorem.

We next prove that the equilibrium proportion rB ∈ (r̂, rD) under the Boston

mechanism is unique.

Let z ≡ λs
µ , w ≡ λa

µ , and y ≡ λb
µ . The equilibrium condition (7) for the Boston

mechanism becomes

ez = 1 +
e

z
r − 1

1−r
r emin{α1(r),α2(r)}e−

zv
r + 1

≡ h(r), (11)

where α1(r) ≡ w
1−r and α2(r) ≡ y+z

r .

We search for the solution to (11) in two regions. Define hi(r) ≡ 1+ e
z
r −1

1−r
r

eαi(r)e−
zv
r +1

for i = 1, 2. Then, h(r) = max{h1(r), h2(r)}. More precisely, if r ≤ 1 − λa, then

α1(r) ≤ α2(r), so h(r) = h1(r); if r ≥ 1− λa, then α1(r) ≥ α2(r), so h(r) = h2(r). We

make two observations below regarding h1(r) and h2(r).

Claim 1. h1(r) is single crossing ez from above to below as r increases in [r̂, 1).

Specifically, if ez ≥ h1(r
′) for some r′ ∈ [r̂, 1), then ez > h1(r

′′) for every r′′ ∈ (r′, 1).

Proof. For any r ∈ [r̂, 1),

ez ≥ h1(r) ⇐⇒ 1− r

r
eα1(r)e−

zv
r + 1 ≥ e

z
r − 1

ez − 1

⇐⇒ e
w

1−r e−
zv
r ≥ ez

ez − 1

(ez((1/r)−1) − 1)

(1/r)− 1
.

Moreover, the strict inequalities can be used instead of the weak ones. The left-hand

side of the last inequality is strictly increasing in r, whereas the right-hand side is
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strictly decreasing in r because(
ez(x−1) − 1

x− 1

)′

> 0 ⇐⇒ z(x− 1)ez(x−1) > ez(x−1) − 1 ⇐⇒ e−z(x−1) > 1− z(x− 1),

which holds for every x > 1. Therefore, Claim 1 holds.

Claim 2. h2(r) is single crossing ez from above to below as r increases in [r̂, 1).

Formally, if ez ≥ h2(r
′) for some r′ ∈ [r̂, 1), then ez > h2(r

′′) for every r′′ ∈ (r′, 1).

Proof. For any r ∈ [r̂, 1),

ez ≥ h2(r) ⇐⇒ 1 ≥ e
z
r − 1

ez − 1
− 1− r

r
eα2(r)e−

zv
r .

We make a change of variable x ≡ 1
r ∈ (1, 1/r̂] and write α̃2(x) = (y + z)x, as defined

in (11). Then,

ez ≥ h2(r) ⇐⇒ 1 ≥ ezx − 1

ez − 1
− (x− 1)eα̃2(x)e−zvx ≡ h̃2(x). (12)

Note that α̃′
2 = y + z is independent of x. Hence,

h̃′2(x) < 0 ⇐⇒ 0 >
zezx

ez − 1
− eα̃2(x)−zvx − (x− 1)(α̃′

2 − zv)eα̃2(x)−zvx

⇐⇒ 0 >
zez(1+v)x−α̃2(x)

ez − 1
− 1− (x− 1)(α̃′

2 − zv) ≡ g̃(x, v).

First, h̃2(1) = 1.

Second, we note that v ∈ (v, v), i.e., an interior equilibrium of the DA mechanism

where rD ∈ (r̂, 1) exists uniquely. We also note that g(x, v), defined in (8) for the DA

mechanism, satisfies g(1, v) < 0. Since g̃(1, v) < g(1; v), we have g̃(1, v) < 0, which

implies that h̃′2(1) < 0.

Last, if zv > y, then g̃(x, v) is a strictly convex function of x ∈ (1, 1/r̂]. Conse-

quently, as x increases from 1 to 1
r̂ , either g̃(x, v) remains to be strictly negative, or

its sign changes exactly once from strictly negative to strictly positive. On the other

hand, if zv ≤ y, then g̃(x, z) is decreasing in x, so it remains to be strictly negative.

In either case, h̃2(x) is a strictly single-dipped function of x ∈ (1, 1/r̂].

Altogether, since h̃2(1) = 0, h̃′2(1) < 0, and h̃2(x) is a strictly single-dipped function

of x ∈ (1, 1/r̂], the function h̃2(x) single crosses 1 from below to above as x increases

in (1, 1/r̂]. Consequently, from (12), we infer that h2(r) single crosses ez from above

to below as r increases in [r̂, 1).
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The uniqueness of the interior equilibrium fraction rB ∈ (r̂, rD) under the Boston

mechanism follows from the following reasoning. If h(1 − λa) ≥ ez, then there is no

solution of h(r) = ez in (r̂, 1 − λa) according to Claim 1, and there is at most one

solution in [1−λa, 1) according to Claim 2. On the other hand, if h(1−λa) < ez, then

there is at most one solution of h(r) = ez in (r̂, 1 − λa] according to Claim 1, and no

solution exists in [1− λa, 1) according to Claim 2.

A.3 Proof of Proposition 2

For any mechanism Γ ∈ {Boston,DA}, we use equations (3) and (4) to apply ∆Γ(θ; r) =

∆Γ(0; r)− λsθ
r to the equilibrium condition (6). This yields:

mΓ(θ) =

(
1 +

1− rΓ

rΓ
exp

(
−∆Γ(0; rΓ)

µ

)
exp

(
λsθ

rµ

))−1

.

Another equilibrium condition (7) implies that:

1− rΓ

rΓ
exp

(
−∆Γ(0; rΓ)

µ

)
=

exp
(

λs

rΓµ

)
− 1

exp
(
λs
µ

)
− 1

− 1.

Thus, if we let z ≡ λs
µ , we have:

mΓ(θ) =
[
1 + h(θ, rΓ)

]−1
, where h(θ, r) =

exp
(
− zθ

r

)
(exp

(
z
r

)
− exp(z))

exp(z)− 1
.

Since gΓ(θ) = mΓ(θ)λs

rΓ
, we get:

d(λs/g
Γ(θ))

dθ
=

∂(rΓ(1 + h(θ, rΓ))

∂θ
= −z · h(θ, rΓ).

Moreover,

∂h(θ, r)

∂r
=

[
zθ

r2
e−

zθ
r (e

z
r − ez)− z

r2
e−

zθ
r e

z
r

]
1

ez − 1

= −
[ z
r2

e−
zθ
r (e

z
r (1− θ) + ezθ)

] 1

ez − 1
< 0.
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Therefore,

rB < rD =⇒ (∀θ ∈ (0, 1)) h(θ, rB) > h(θ, rD)

=⇒ (∀θ ∈ (0, 1))
d(λs/g

B(θ))

dθ
<

d(λs/g
D(θ))

dθ

=⇒ (∀θ < θ′)
1

gB(θ)
≤ 1

gD(θ)
=⇒ 1

gB(θ′)
<

1

gD(θ′)

=⇒ gB(θ) is single crossing gD(θ) from below.

A.4 Proof of Proposition 3

Expressions (3) and (4) show that both ∆D(θ;rB)
µ and ∆B(θ;rB)

µ are functions of θ in

the form of α(θ + β), where α = λs

rBµ
and β = v − 1 for the Deferred Acceptance

(DA) mechanism, while for the Boston mechanism, β is smaller than v− 1. Therefore,

switching the mechanism from Boston to DA, while keeping rB unchanged, corresponds

to increasing β from β = v −min
{

rB

λs

λa

1−rB
, 1−λa

λs

}
to β = v − 1.

According to Yang (2015), a student’s interior optimal strategy m : [0, 1] → [0, 1],

for a given α and β, satisfies the following first-order condition:

α(θ + β) = ln

(
m(θ)

1−m(θ)

)
− ln

(
m

1−m

)
.

where m denotes the expected value of m(θ) over the uniform distribution of θ. Thus,

an optimal strategy has the form m(θ) = Leα(θ+β)

Leα(θ+β)+1
, where L = m

1−m is the likelihood

ratio between the reports sab and asb. The consistency m =
∫
m(θ)dθ requires the

likelihood ratio L to satisfy∫ 1

0

Leα(θ+β)

Leα(θ+β) + 1
dθ =

L

L+ 1
⇐⇒

∫ 1

0

1

L+ e−α(θ+β)
dθ =

1

L+ 1
. (13)

To begin, we establish the existence of a unique interior solution L to equation (13).

Finding a solution L to (13) is equivalent to finding a solution m = L
L+1 ∈ (0, 1) to the

equation: ∫ 1

0

meα(θ+β)

meα(θ+β) + 1−m
dθ −m = 0

⇐⇒ log(meα(θ+β) + 1−m)
∣∣∣1
0
− αm = 0

⇐⇒ f(m;α, β) ≡ m(eα(1+β) − eα(m+β)) + (1−m)(1− eαm) = 0. (14)
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Since v ∈ (v, v), the Boston mechanism (as well as the DA mechanism) has a unique in-

terior equilibrium with the proportion rB ∈ (r̂, 1) of students reporting sab. Therefore,

we have f(rB;α, β) = 0.

For any β∗ ∈ (β, β], we have 0 = f(rB;α, β) < f(rB;α, β) because the function f

is increasing in β. Furthermore, f(1;α, β) = 0, and since 1 + β∗ ≤ 1 + β = v < v, we

can see that

f ′(1;α, β) = eα − 1− αeα(1+β)
> ez − 1− zezv = 0 (by (9)).

Therefore, there exists m ∈ (rB, 1) such that f(m;α, β) = 0, which is equivalent to

L∗ = m
1−m being a solution of (13) at β∗ > β.

The solution L∗ of (13) at β∗ > β must be unique because

d

dL

(∫ 1

0

1

e−α(θ+β∗) + L∗dθ −
1

L∗ + 1

)
= −

∫ 1

0

1

(e−α(θ+β∗) + L∗)2
dθ +

1

(L∗ + 1)2
< 0,

The last inequality holds because 1
e−α(θ+β∗)+L∗ is a random variable whose expected

value is 1
L∗+1 by (13), and for a random variable X, V ar[X] = E[X2]− (E[X])2 > 0.

Next, L(β) be the unique solution to (13) for each β ∈ (β, β). By the Implicit

Function Theorem, we have∫ 1

0

−αe−α(θ+β) + L′(β)

(e−α(θ+β) + L(β))2
dθ =

L′(β)

(L(β) + 1)2
,

which implies

L′(β)

[∫ 1

0

1

(e−α(θ+β) + L(β))2
dθ − 1

(L(β) + 1)2

]
=

∫ 1

0

αe−α(θ+β)

(e−α(θ+β) + L(β))2
dθ > 0.

Therefore, L′(β) > 0.

Finally, take any β1 < β2 in (β, β), and let L1 and L2 be the solutions to (13) for

β1 and β2, respectively. Then, L1 < L2, as we showed above. For each βi, i ∈ {1, 2},
let mi(θ) be the optimal strategy and gi(θ) ≡ mi(θ)

λs
mi

be the resulting assignment of

students to school s by the DA mechanism. Then, λs
gi(θ)

= L+e−α(θ+βi)

Li+1 , and

λs

g2(θ)
− λs

g1(θ)
=

(
e−αβ2

L2 + 1
− e−αβ1

L1 + 1

)
e−αθ +

(
L2

L2 + 1
− L1

L1 + 1

)
,

which is strictly increasing in θ. Hence, g1 is single crossing g2 from below.
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A.5 Proof of Propositions 4 and 5

Propositions 4 and 5 both analyze the student’s problem under the DA mechanism,

but with different assumptions about the cost of information µ or the beliefs of the

other students, particularly the proportion r of other students reporting sab.

For any µ and r such that µ < λs(1 − v) and r ∈ (rBµ , r
D
µ ), we have ∆D(θ;r)

µ =

α(θ+ v− 1), where α = λs
rµ . A decrease of α corresponds to an increase of r when µ is

fixed (for Proposition 4) or an increase of µ when r is fixed (for Proposition 5).

In the previous proof of Proposition 3, we showed that a student’s interior optimal

strategy is m(θ) = meα(θ+β)

meα(θ+β)+1−m
where m is a unique interior solution of (14), or

equivalently

h(m,α) ≡ e−αmf(m;α, v − 1) = m(e−α(m−v) − e−α(1−v)) + (1−m)(e−αm − 1) = 0.

Note that we vary α but hold β fixed at v− 1 because we are considering only the DA

mechanism.

(Part 1)

First, we show that the unique solution m∗ of h(m,α) = 0 in (r̂, 1) decreases in α.

This result implies that the homogeneity of rank-order reports increases in the agents’

belief r (Proposition 4) and in the cost of information acquisition µ (Proposition 5).

Note that h(0, α) = h(1, α) = 0. Moreover,

∂h(0, α)

∂m
= eαv(1− e−α)− α ≥ eα/2 − e−α/2 − α > 0, and

∂h(1, α)

∂m
= e−α(eα − 1− αeαv) > e−α(eα − 1− αeαv) > 0,

where the last inequality holds because eα − 1− αeαv increases in α, ez − 1− zezv = 0

by (9), and α ≡ λs
rµ > λs

µ ≡ z. Together, these inequalities imply that at a unique

interior solution m∗ ∈ (0, 1) of h(m,α) = 0, it must be that ∂h(m∗,α)
∂m < 0.

On the other hand, since µ < λs(1− v), we have 1
α + v < µ

λs
+ v < 1, which implies

that, at m = 1
α + v(< 1),

h(m,α) =
1

αe

(
(1 + αv)(1− e1−α(1−v)) + (α(1− v)− 1)(eαv − e)

)
> 0,
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which implies m∗ > 1
α + v. Then, 1 < α(m∗ − v) < α(1− v), and

∂h(m∗, α)

∂α
< m∗ ∂

∂α

(
e−α(m∗−v) − e−α(1−v)

)
=

1

α

(
−α(m∗ − v)e−α(m∗−v) + α(1− v)e−α(1−v)

)
< 0,

where the last inequality holds because xe−x decreases in x > 1.

Applying the Implicit Function Theorem, we can conclude that the solution m∗

decreases in α (or, increases in r and µ).

(Part 2)

Let L(α) denote the unique solution of (14). Then, we havem(θ;α) = L(α)eα(θ+v−1)

L(α)eα(θ+v−1)+1

and
g(θ;α)

λs
=

L(α) + 1

L(α) + e−α(θ+v−1)
.

In Part 1, we showed that L(α) = m(α)
1−m(α) decreases as α increases. Furthermore,

we have

∂g(θ;α)

∂α
> 0 ⇐⇒ L′(α)(L(α) + e−α(θ+v−1)) > (L(α) + 1)(L′(α)− (θ + v − 1)e−α(θ+v−1))

⇐⇒ θ + v − 1 >
L′(α)

L(α) + 1
(eα(θ+v−1) − 1).

Thus, we can conclude that dg(θ;α)
dα > 0 for every θ > 1 − v, and dg(θ;α)

dα < 0 for every

θ < 1− v. Therefore, for α1 > α2, g
H(·;α1) is single crossing gH(·;α2) from below.

A.6 Proof of Proposition 6

Given the parameter values v > 1/2 and λs ≤ λa, we observe that v > 1
2 ≥ r̂ ≡ λs

λs+λa
.

A.6.1 Proof for the DA mechanism

For a given µ, let vµ denote the upper bound of v for which an interior equilibrium with

a fraction rDµ ∈ (r̂, 1) exists. Specifically, we have vµ = 1
z log

(
ez−1
z

)
where z ≡ λs

µ , as

defined in (9). It can be shown that vµ is a strictly increasing and continuous function

of z, ranging from limz→0 vµ = 1
2 to limz→∞ vµ = 1. Conversely, for each v > 1

2 , we

can find µ such that v = 1
z log

(
ez−1
z

)
, where z ≡ λs

µ . An interior equilibrium under

the DA mechanism exists with a fraction rDµ ∈ (r̂, 1) only if µ < µ. Additionally,

limµ→µ vµ = v (i.e., the upper bound for an interior equilibrium becomes close to v),

and so limµ→µ r
D
µ = 1.
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We will now demonstrate that the equilibrium fraction rDµ strictly increases as µ

increases.

Let x ≡ 1
r and z ≡ λs

µ . We can express the equilibrium condition (7) as follows:

ez = 1 +
ezx − 1

(x− 1)ezx(1−v) + 1

⇐⇒ ezx − 1− (ez − 1)((x− 1)ezx(1−v) + 1) = 0

⇐⇒ (ezx − ez)− (x− 1)(ez − 1)ezx(1−v) = 0

⇐⇒ h(x; z) ≡ ezxv(1− ez(1−x))− (x− 1)(ez − 1) = 0.

By Proposition 1, there exists a unique solution x∗ of h(x; z) = 0.

We claim the following in order to apply the Implicit Function Theorem. For ease

of exposition, we will suppress the dependency of x∗ on z.

Claim 3. 1. 1
y − 1

ey−1 < 1
2 for any y > 0, and

2. log
(

y
ey−1

)
+ y + y

ey−1 is strictly increasing in y.

Proof. (Part 1) By L’Hopital’s rule,

lim
y→0

1

y
− 1

ey − 1
= lim

y→0

ey − 1− y

y(ey − 1)
= lim

y→0

ey − 1

ey − 1 + yey
= lim

y→0

ey

2ey + yey
=

1

2
.

Moreover, (
1

y
− 1

ey − 1

)′
= − 1

y2
+

ey

(ey − 1)2
< 0 ⇐⇒ y2ey < (ey − 1)2 (15)

⇐= 2yey + y2ey < 2(ey − 1)ey ⇐⇒ 2y + y2 < 2(ey − 1)

⇐= 2 + 2y < 2ey,

which holds for every y > 0. In each step above, we observed that the two sides of an

inequality converge to each other as y → 0, and we compared their derivatives.

(Part 2)
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Let f(y) ≡ log
(

y
ey−1

)
+ y + y

ey−1 . Then,

f ′(y) = 1 +

(
1 +

ey − 1

y

)(
y

ey − 1

)′
= 1 +

(
1 +

ey − 1

y

)
ey − 1− yey

(ey − 1)2
> 0

⇐⇒
(
1 +

ey − 1

y

)(
1− yey

ey − 1

)
> 1− ey

⇐⇒ ey − 1

y
>

yey

ey − 1
,

which always holds by (15).

Claim 4. ∂h(x∗,z)
∂x > 0.

Proof. Observe that

∂h(x, z)

∂x
= ezxv(zv)(1− ez(1−x)) + ezxvez(1−x)z − (ez − 1).

As h(x∗, z) = 0, we have ezx
∗v(1−ez(1−x∗))

x∗−1 = ez − 1. This implies

∂h(x∗, z)

∂x
> 0 ⇐⇒ ezx

∗v(zv)(1− ez(1−x∗)) + ezx
∗vez(1−x∗)z > (ez − 1)

⇐⇒ zv(x∗ − 1) +
z(x∗ − 1)

1− ez(1−x∗)
ez(1−x∗) > 1

⇐⇒ v >
1

z(x∗ − 1)
− 1

ez(x∗−1) − 1
.

The last inequality always holds because of v > 1/2 and Part 1 of Claim 3.

Claim 5. If x∗ < 2, then ∂h(x∗,z)
∂z < 0.

Proof. Observe that

∂h(x, z)

∂z
= ezxv(xv)(1− ez(1−x)) + ezxvez(1−x)(x− 1)− (x− 1)ez.

As h(x∗, z) = 0, we have ezx
∗v = (x∗−1)(ez−1)

1−ez(1−x∗) . This implies

∂h(x∗, z)

∂z
< 0 ⇐⇒ (x∗v) +

(x∗ − 1)ez(1−x∗)

1− ez(1−x∗)
<

ez

ez − 1

⇐⇒ (x∗v) +
(x∗ − 1)

ez(x∗−1) − 1
< 1 +

1

ez − 1
.
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On the other hand, h(x∗, z) = 0 is equivalent to

zx∗v = log

(
(x∗ − 1)(ez − 1)

1− ez(1−x∗)

)
= log

(
z(x∗ − 1)

1− ez(1−x∗)

)
+ log

(
ez − 1

z

)
= log

(
z(x∗ − 1)

ez(x∗−1)−1

)
+ z(x∗ − 1)− log

(
z

ez − 1

)
.

Therefore,

∂h(x∗, z)

∂z
< 0 ⇐⇒ (zx∗v) +

z(x∗ − 1)

ez(x∗−1) − 1
< z +

z

ez − 1

⇐⇒ log

(
z(x∗ − 1)

ez(x∗−1)−1

)
+ z(x∗ − 1) +

z(x∗ − 1)

ez(x∗−1) − 1
< log

(
z

ez − 1

)
+ z +

z

ez − 1
.

The last inequality always holds for x∗ < 2 by Part 2 of Claim 3.

If µ is sufficiently small (i.e., a large z), then rDµ is close to the equilibrium fraction

v > 1
2 for the case of zero cost of information acquisition, and thus rDµ > 1/2 (i.e.,

x∗ < 2). If x∗ < 2, then x∗ increases in z (i.e., decreases in µ) by Claim 4, Claim 5, and

the Implicit Function Theorem. Hence, as µ increases (i.e., z decreases), rDµ remains

to be greater than 1/2 (i.e., x∗ remains less than 2), and rDµ continues to increase in µ.

A.6.2 Proof for the Boston mechanism

We assume that v and µ are chosen such that an equilibrium with fraction rBµ exists in

the interval (1/2, 1). We use a change of variables x ≡ 1
r , z ≡ λs

µ , w ≡ λa
µ , and y ≡ λb

µ .

Then, the equilibrium condition (11) becomes

ez = 1 +
ezx − 1

(x− 1)emin{α1(x),α2(x)}e−zvx + 1
, (16)

where α1(x) ≡ wx
x−1 and α2(x) ≡ (y + z)x.

For i = 1, 2, let us define:

hi(x, µ) ≡ ezvx(1− ez(1−x))− (x− 1)(ez − 1)eαi(x)−zx.

Note that if xBµ ≥ 1
1−λa

, then h1(x
B
µ , µ) = 0. Similarly, if xBµ ≤ 1

1−λa
, then h2(x

B
µ , µ) =

0.

We will now prove that for i = 1, 2, if a solution x∗i of hi(x;µ) = 0 is less than 2,

then the solution strictly decreases as µ increases. The proof follows a similar approach

to the proof for the DA mechanism, where the Implicit Function Theorem is used to

show that rDµ increases in µ. To apply the Implicit Function Theorem, we need to
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make the following claim.

Claim 6. For any x ∈ (1, 2) and y > 0, we have log (x−1)(ez−1)

1−ez(1−x) > zx
2 .

Proof. It is sufficient to show that for any x ∈ (1, 2)

(x− 1)(ey − 1) > exy/2 − ey(1−(x/2)).

Both sides of the above inequality are equal to 0 at x = 1 and equal to ey − 1 at

x = 2. The left-hand side is a linear function of x, while the right-hand side is a

strictly convex function of x ∈ (1, 2). To see the strict convexity, note that the second

derivative of the right-hand side with respect to x is given by (exy/2 − ey(1−(x/2)))′′ =

(y/2)(exy/2 + ey(1−(x/2)))′ = (y/2)2(exy/2 − ey(1−(x/2))) > 0.

Claim 7. For i = 1, 2, if x∗i ∈ (1, 2), then
∂hi(x

∗
i ,µ)

∂x > 0.

Proof. For each i = 1, 2,

∂hi(x, µ)

∂x
=ezvxzv(1− ez(1−x)) + ezvxez(1−x)z

− (ez − 1)eαi−zx − (x− 1)(ez − 1)eαi−zx(α′
i − z),

where α′
1 ≡ dα1

dx = − w
(x−1)2

and α′
2 ≡ dα2

dx = y + z.

Since hi(x
∗
i , µ) = 0, we have ezvx

∗
i (1− ez(1−x∗

i )) = (x∗i − 1)(ez − 1)eαi−zx∗
i , by which

and z we divide the above derivative and obtain:

∂hi(x
∗
i , µ)

∂x
> 0 ⇐⇒ v +

1

1− ez(1−x∗
i )
ez(1−x∗

i ) >
1

z(x∗i − 1)
+

(
α′
i

z
− 1

)
⇐⇒ v −

(
α′
i

z
− 1

)
>

1

z(x∗i − 1)
− 1

ez(x
∗
i−1) − 1

. (17)

The right-hand side of (17) is less than 1
2 (Part 1 of Claim 3). On the other hand, the

left-hand side of (17) is greater than 1
2 because,

• (for i = 1) v −
(
α′
1
z − 1

)
> v + 1 > 1

2 , and

• (for i = 2) h2(x
∗
2, µ) = 0 implies zvx∗2 = log

(x∗
2−1)(ez−1)

1−ez(1−x∗2)
+ (α2 − zx∗2), and α2 =

α′
2x

∗
2. Thus

v −
(
α′
2

z
− 1

)
= v + 1− α2

zx∗2
>

1

2
⇐⇒ log

(x∗2 − 1)(ez − 1)

1− ez(1−x∗
2)

>
zx∗2
2

,

and the last inequality holds by Claim 6.

Therefore, we conclude that
∂hi(x

∗
i ,µ)

∂x > 0.

32



Claim 8. For i = 1, 2, if x∗i ∈ (1, 2), then
∂hi(x

∗
i ,µ)

∂µ > 0.

Proof. For each i = 1, 2,

∂hi(x, µ)

∂µ
=z′

(
ezvxvx(1− ez(1−x))− ezvxez(1−x)(1− x)− (x− 1)ezeαi−zx

)
− (x− 1)(ez − 1)eαi−zx(α′

i − z′x),

where z′ = −λs
µ2 , w

′ = −λa
µ2 , y

′ = −λb
µ2 , α

′
1 =

w′x
x−1 < 0, and α′

2 = (y′ + z′)x < 0.

Since hi(x
∗
i , µ) = 0, we have ezvx

∗
i (1− ez(1−x∗

i )) = (x∗i − 1)(ez − 1)eαi−zx∗
i , by which

and z′ we divide the above derivative and obtain:

∂hi(x
∗
i , µ)

∂µ
< 0 ⇐⇒ vx∗i −

ez(1−x∗
i )(1− x∗i )

1− ez(1−x∗
i )

<
ez

ez − 1
+

(
α′
i

z′
− x∗i

)
⇐⇒ zvx∗i +

z(x∗i − 1)

ez(x
∗
i−1) − 1

< z +
z

ez − 1
+ (αi − zx∗i ),

where the last step follows from
α′
i

z′ = αi
z for i = 1, 2.

On the other hand, hi(x
∗
i , µ) = 0 implies that

zvx∗i = log

(
(x∗i − 1)(ez − 1)eαi−zx∗

i

1− ez(1−x∗
i )

)
= log

(
z(x∗i − 1)

ez(x
∗
i−1) − 1

)
+ z(x∗i − 1)− log

(
z

ez − 1

)
+ (αi − zx∗i ).

Therefore,
∂hi(x

∗
i ,µ)

∂µ < 0 if and only if

log

(
z(x∗i − 1)

ez(x
∗
i−1) − 1

)
+ z(x∗i − 1) +

z(x∗i − 1)

ez(x
∗
i−1) − 1

< log

(
z

ez − 1

)
+ z +

z

ez − 1
,

which always holds because of x∗i < 2 and Part 2 of Claim 3.

For each i = 1, 2, if the solution x∗i of hi(x, µ) = 0 is less than 2, then it will

decreases as µ increases due to Claim 7, Claim 8, and the Implicit Function Theorem.

As xBµ = x∗i for either i = 1 or i = 2, this implies that xBµ < 2 also decreases as µ

increases. Consequently, when rBµ (= 1/xBµ ) becomes greater than 1/2, it will increase

as µ increases.

Next, we will prove that v ≤ 1
2 + λb

λs
implies rBµ ≤ max{1

2 , 1− λa}.
Suppose that rBµ > 1 − λa. Then, by the equilibrium condition (11), rBµ is the

unique solution of

ez = 1 +
e

z
r − 1

1−r
r e

y+z
r e−

zv
r + 1

≡ h̃(r).
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In a previous proof (Claim 2), we showed that h̃(r) is single-crossing ez from above to

below as r increases in [r̂, 1) (Claim 2). Moreover,

ez ≥ h̃(1/2) ⇐⇒ e2(y+z)e−2zv + 1 ≥ e2z − 1

ez − 1
= ez + 1

⇐⇒ 2(y + z − zv) > z ⇐⇒ v ≤ 1

2
+

y

z
=

1

2
+

λb

λs
.

Therefore, we conclude that rBµ ≤ 1/2.
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