
Optimal Dynamic Matching

Mariagiovanna Baccara∗ SangMok Lee† Leeat Yariv‡§

August 19, 2019

Abstract

We study a dynamic matching environment where individuals arrive sequentially.
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1 Introduction

1.1 Overview

Many matching processes are inherently dynamic, with participants arriving and matches be-

ing created over time. For instance, in the child-adoption process, parents and children arrive

steadily– data from one U.S. adoption facilitator who links adoptive parents and birth mothers

willing to relinquish children for adoption indicates a rate of about 11 new potential adoptive

parents and 13 new birth mothers entering the facilitator’s operation each month.1 While the

overall statistics on the entry of parents and children into the U.S. adoption process are not

well-documented, adoption touches upon many lives: The Census 2010 indicates that about

1.5 million or 2.4 percent of all children have been adopted. Likewise, many labor markets en-

tail unemployed workers and job openings that become available at different periods– the U.S.

Bureau of Labor Statistics reports approximately five million new job openings and slightly

fewer than five million newly unemployed workers each month this year. A similar picture

emerges when considering organ donation. According to the Organ Donation and Transplan-

tation Statistics, a new patient is added to the kidney transplant list every 14 minutes and

about 3, 000 patients are added to the kidney transplant list each month. A significant frac-

tion of transplants are carried out using live donors– in 2014, about a third of approximately

17, 000 kidney transplants that took place in the U.S. involved such donors.

Nonetheless, by and large, the extant matching literature has taken a static approach

to market design– participants all enter at the same time and the market’s operations are

restricted in their horizon (see the literature review below for several important exceptions).

In the current paper, we offer techniques for extending that approach to dynamic settings.

All of the examples mentioned above share two important features. First, match quality

varies and agents care about whom they match with. Second, waiting for a match is costly, be

it for financial costs of keeping lawyers on retainer for potential adoptive parents, children’s

hardship from growing older in the care of social services, the lack of wages and needed

employees in labor markets, or medical risks for organ patients and psychological waiting

costs for donors. These two features introduce a crucial trade-off. On the one hand, a thick

market can help generate a greater match surplus; on the other hand, a thin market allows for

quicker matching and cuts down on waiting costs. The goal of this paper is to characterize the

1This adoption facilitator is one of 25 registered in its state of operation. See Baccara, Collard-Wexler,
Felli, and Yariv (2014) for details.
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resolution of this trade-off in both centralized and relatively more decentralized environments.

Namely, we identify the optimal protocol by which a social planner would match agents

over time. We also identify conditions under which discretionary matching processes would

especially benefit from centralized intervention using the optimal protocol.

Specifically, we consider a market that evolves dynamically. There are two classes of agents,

which we refer to as “squares”and “rounds.”At each period, a pair consisting of a square and

a round enters the market. Squares and rounds each have two types, one type more desirable

than the other. For instance, if we think of squares and rounds as children relinquished for

adoption and potential adoptive parents, types can stand for gender of children and wealth

levels of potential adoptive parents, respectively (see Baccara, Collard-Wexler, Felli, and Yariv,

2014). Alternatively, if we think of the two classes of agents as workers and firms, worker types

can correspond to skills and firm types can correspond to various benefit packages offered. We

assume that preferences are super-modular so that the (market-wide) assortative matching

maximizes joint welfare. We also assume that, once agents arrive at the market, waiting

before being matched comes at a per-period cost.

We start by analyzing the optimal matching mechanism in such settings, the mechanism

that maximizes the expected per-period payoffs for market participants. We show that the

optimal mechanism takes a simple form. Whenever congruent pairs of agents– a square and

round that are of the same type– are present in the market, they are matched instantaneously.

When only incongruent agents are present in the market, they are held in a queue. When

the stock of incongruent pairs in the queue exceeds a certain threshold, they are matched

in sequence, until the queue length falls back within the threshold. Such thresholds induce

a Markov process, where states correspond to the length of queues of incongruent agent

pairs. Any threshold yields a different steady-state distribution over possible queue lengths.

We evaluate the expected welfare of such threshold mechanisms in the steady-state. The

optimal mechanism utilizes the threshold that maximizes welfare. When waiting costs are

vanishingly small, the welfare under the optimal mechanism approaches the maximum feasible,

that generated by no matches of incongruent pairs. As waiting costs increase, the welfare

generated by the optimal mechanism decreases.

This welfare decrease raises the question of the value of dynamic clearinghouses for non-

trivial waiting costs in different environments, identified by type distributions and preferences.

We therefore study the performance of a simple discretionary matching process in our setting.
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As before, we consider agents arriving at the market in sequence. At each period, agents

in the market declare their willingness to match with partners of either type. After these

demands have been made, the maximal number of pairs of willing agents are matched in

order of arrival (first-in-first-out, or FIFO protocol).2 Those who prefer to stay in the market,

or have to stay for lack of willing partners, form a queue.3 In our environment, desirable

individuals waiting in the market impose three types of externalities. First, they impose a

longer wait and potentially missed desirable matches on those that follow them in the queue.

Second, they prevent undesirable agents present in the market from matching immediately.

Last, they impose a positive externality on desirable agents on the other side of the market,

who are more likely to get a quicker match with a preferable partner. As it turns out, the

negative externalities of waiting dominate and lead to excessive waiting in the discretionary

setting. In fact, the matching protocol induced by equilibrium in the discretionary matching

process ends up resembling the protocol corresponding to the optimal mechanism, but with

higher thresholds for the queues’lengths.

We evaluate the difference in welfare generated by a centralized and a discretionary process

as a function of the environment’s primitives– agents’ type distribution and waiting costs.

Regarding the type distribution, as the frequency of desirable types increases, the option

value of waiting becomes higher and the wedge between the performance of the centralized

and discretionary processes grows. The comparative statics with respect to waiting costs are

more subtle. An increase in the cost of waiting has a direct and indirect effect. The direct

effect is due to the longer expected queues in the discretionary setting. Fixing the expected

queue lengths corresponding to both processes, an increase in per-period waiting costs has

a multiplier effect– the generated welfare differential is the difference between the expected

time agents wait in queue under the two processes, multiplied by the change in costs. The

indirect effect is that both the optimal threshold as well as the equilibrium threshold in the

discretionary process decrease with waiting costs. The difference between these two thresholds

therefore narrows as costs increase, which mutes the welfare gap between the two processes.

We show that the combination of these effects leads to a welfare wedge that is locally increasing

in costs, but exhibits a general decreasing trend. Ultimately, when costs are prohibitively high,

both processes lead to instantaneous matches and identical welfare levels.

2This process is reminiscent of a double auction, as each agent submits a “demand function” specifying
which types of agents she would be interested in matching with immediately.

3The process is individually rational for all under preference restrictions we provide.
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The discretionary process we focus on relies on the FIFO protocol. While this seems

to approximate many real-life decentralized processes, we also analyze a discretionary setting

governed by a last-in-first-out (LIFO) priority protocol. We show that this alternative protocol

also generates excessive waiting, but less so than the FIFO protocol. Finally, we consider an

extension of our model to general asymmetric environments.

1.2 Related Literature

The interest surrounding dynamic matching is recent and the literature on this topic is still

relatively limited. Much of this literature stemmed from the organ donation application, and

has therefore focused on compatibility-based preferences. In contrast, we aim to speak to

applications– such as child adoption and labor markets– in which agents on both sides of the

market have preferences over potential matches.

Zenios (1999) develops a queueing model to explain the differences between waiting times

of different categories of patients anticipating a kidney transplant. In the context of kidney

exchange, Ünver (2010) focuses on a market in which donors and recipients arrive stochasti-

cally, and the central planner’s objective is to minimize total discounted waiting costs. He

shows that when multi-way matches are possible, some two-way matches could be optimally

withheld in order to allow future multi-way matches.4

Akbarpour, Li, and Oveis Gharan (2019), like us, inspect the benefits of different mech-

anisms in a dynamic matching environment. In their setting, however, preferences are based

on compatibility. Agents in the system become “critical”at random dates, and perish imme-

diately if they are unmatched. Therefore, when waiting costs are negligible, the goal of the

planner is to minimize the number of perished agents. Market thickness is beneficial in that it

guarantees the availability of immediate matches for agents who become critical. In contrast

with our setting, left to their own devices, agents would match quickly and useful mechanisms

induce agents to wait. While the welfare benchmark in Akbarpour, Li, and Oveis Gharan

(2019) is that of an omniscient planner, our different focus allows us to fully characterize the

optimal mechanism, which serves as our benchmark for welfare comparisons.

Loertcher, Muir, and Taylor (2018) follow up on our paper and focus on the optimal

mechanism when the planner and participants discount future utilities. The interpretation

4Some recent models in inventory control have a similar flavor to the compatibility-based matching process
considered by Ünver (2010), see e.g. Gurvich and Ward (2014) and Hu and Zhou (2018).
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of the objective function in their setting is subtle. When two agents of identical types who

arrived at different times are matched at date t, the agents experience different discounted

utilities, but the planner’s utility from the two matches is identical. Similarly, when assessing

future matches, the planner cares only about when they are formed. That is, individual costs

of delay do not enter the planner’s objective function. Doval and Szentes (2018) also follow up

on this paper and consider a planner who benefits from the discounted utility agents receive

in steady state. In their setting, once agents have been in the market for a while, their impact

on welfare becomes vanishingly small. The planner is then willing to “store” agents for a

long while in hopes of them allowing new arrivals to match quickly. While the fully-optimal

mechanism is not analyzed, results suggest that, naturally, the planner may impose more

waiting on individuals than they themselves would in a discretionary FIFO protocol.

Dynamic assignments, where only one side of the market has agency, have received at-

tention in the queueing literature. For instance, Naor (1969) illustrates that individuals who

decide whether to join a FIFO queue for some service may wait excessively. Waiting agents

impose a purely negative externality by increasing expected wait time of others joining the

queue. Hassin (1985) shows that a LIFO queue yields equilibrium behavior that emulates the

socially optimal. The negative externality in these papers is also present in ours. However,

the two-sided nature of our setting introduces additional positive externalities. Consequently,

the analysis of our decentralized process is quite different. In particular, LIFO protocols do

not generally yield socially-optimal outcomes.

Related, Leshno (2017) studies a one-sided market in which potentially-heterogeneous

objects are allocated to agents who wait in a queue. With incomplete information on agents’

preferences, a policy that introduces delays can be beneficial.5 Anderson, Ashlagi, Gamarnik,

and Kanoria (2017) study an environment in which each agent is endowed with an item that

can be exchanged with an item owned by someone else and compatibility is stochastic. They

find that a policy that maximizes immediate exchanges performs nearly optimally.6 ,7

There is recent work that studies discretionary matching processes that are dynamic,

considering both informational and time frictions (e.g., Ferdowsian, Niederle, and Yariv, 2019,

Haeringer and Wooders, 2011, and Pais, 2008). In that literature, the number of agents on

5See also Bloch and Cantala (2017), Ortoleva, Safonov, and Yariv (2019), and Schummer (2017).
6On the benefits of creating thicker pools in sparse dynamic allocation settings, see also Ashlagi, Jaillette,

and Manshadi (2014), Ashlagi, Burq, Jaillette, and Manshadi (2018), and references there.
7While most of this literature has focused on market design, Doval (2018) introduces a notion of stability

in dynamic environments and provides conditions under which dynamically stable allocations exist.
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each side of the market is fixed at the outset, but interactions occur over time. Time and

information frictions constitute obstacles to stability.

The search and matching literature is also related (e.g., Burdett and Coles, 1997, Eeckhout,

1999, and the survey by Rogerson, Shimer, and Wright, 2005). There, each period, workers

and firms randomly encounter each other and decide jointly whether to pursue a match and

leave the market or separate and wait further. With assortative preferences, as time frictions

vanish, generated outcomes approximate a stable matching. A crucial difference with our

setting is the market’s stationarity– the perceived distribution of potential partners does not

change with time, and each side of the market solves an option value problem.

Last, a large literature considers dynamic matching of buyers and sellers and inspects

protocols that increase effi ciency or allow for Walrasian equilibrium outcomes to emerge with

increasingly patient agents (see, e.g., Satterthwaite and Shneyerov, 2007 and Taylor, 1995).

2 Setup

We study an infinite-horizon dynamic matching market. There are two kinds of agents: squares

and rounds. Squares and rounds can stand for potential adoptive parents and children relin-

quished for adoption, workers and employers, patients and (good samaritan) donors, etc. At

each time t ∈ {1, 2, . . . }, one square and one round arrive at the market. Each square can
be of either type “high”(H) or “low”(L) with probability p or 1− p, respectively, and each
round can be of type “high”(h) or “low”(l) with probability p or 1− p, respectively. These
types correspond to the attributes of participants– they can stand for the wealth of parents

and race of children in the adoption application, level of education of employees and social

benefits or promotion likelihoods for employers in labor markets, age or tissue types in the

organ donation context, etc.8

In our model, squares seek to match with rounds and vice versa. We denote by Ux(y) the

surplus for a type-x participant from matching with a type-y participant. We assume that

preferences are assortative: H-squares are more desirable for all rounds and h-rounds are more

8In some markets, wages differ across individual employees and can be thought of as transfers, which this
paper does not handle. However, Hall and Kruger (2012) suggest that a large fraction of jobs have posted
wages that do not appear to reflect general equilibrium wages tailored to the precise composition of the market.
Our model speaks to this segment of the market.
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desirable for all squares. That is,

UH(h) > UH(l), UL(h) > UL(l),

Uh(H) > Uh(L), Ul(H) > Ul(L).

It will be convenient to denote:

UHh ≡ UH(h) + Uh(H), UHl ≡ UH(l) + Ul(H),
ULh ≡ UL(h) + Uh(L), ULl ≡ UL(l) + Ul(L),

as well as

U ≡ UHh + ULl − UHl − ULh.

We will further assume that U > 0 so that the utilitarian-effi cient matching in a static

market creates the maximal number of (H, h) and (L, l) pairs. The value of U captures the

effi ciency gain from the assortative matching relative to the anti-assortative matching. Notice

that U > 0 is tantamount to assuming super-modular assortative preferences (a-la Becker,

1974) and U can be thought of as the degree of super-modularity preferences exhibit. We

assume that each square and round suffer a cost c > 0 for each period they spend on the

market waiting to be matched, and that agents leave the market only by matching.9

Several assumptions merit discussion. We assume that preferences are super-modular and

that waiting costs are identical for squares and rounds for presentation simplicity. These as-

sumptions are common in the literature and, as we describe in Section 5, lead to a conservative

comparison of the optimal and discretionary matching protocols.10

The assumption that the distribution of types of rounds mirrors that of squares also sim-

plifies our analysis. It implies that if we drew a large population of rounds and squares,

the realized distributions of types would be approximately balanced with high probability.

This may be a fairly reasonable assumption for certain applications, such as organ donation.

9In the working-paper version, Baccara, Lee, and Yariv (2018), we provide bounds on agents’utility from
remaining unmatched that assure this assumption is consistent with individual rationality. Specifically, we
show that individual rationality holds when all agents are acceptable and when any l-round receives a utility
lower than Ul(L)− p

1−p [Uh(H)− Uh(L)] when leaving the market unmatched (analogously for L-squares).
10Our analysis carries through fully if participants are horizontally differentiated. In particular, if H-squares

and h-rounds prefer one another and L-squares and l-rounds prefer one another, the utilitarian-effi cient static
matching is assortative without further assumptions. This may be relevant in some child-adoption contexts if
both adoptive parents and birth mothers display what is often termed “homophilic preferences,”preferring to
match with individuals of their own race. We describe our results assuming assortative preferences since they
are a leading example in the extant literature and potentially tie to more applications.
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Indeed, the literature does not report differences in tissue-type distributions of donors and pa-

tients.11 Our assumption also approximately holds for certain attributes in the online-dating

world (see Hitch, Hortacsu, and Ariely, 2010). The techniques we introduce can, however, be

used even without this symmetry assumption. In Section 7 we discuss how to replicate some

of our analysis for general asymmetric settings.

In our setting, a pair of agents arrives at the market in each period. The analysis would

remain virtually identical were we to assume that pairs arrive at random times following, say,

a Poisson distribution. Moreover, our results extend directly to markets with multiple pairs

arriving each period. The assumption that participants arrive in pairs is, however, important

for our techniques. It ensures that the market is balanced throughout the matching process.

It is a reasonable assumption for some applications. For example, in the adoption process,

Baccara, Collard-Wexler, Felli, and Yariv (2014) follow one adoption facilitator over several

years. They document a similar volume of potential adoptive parents and children available

for adoption appearing each month.12

In our model, agents incur a fixed cost c for every period they spend unmatched. Additive

waiting costs are a natural way to capture flow costs that agents incur while unmatched in

the system. For example, in the child-adoption setting, families seeking to adopt a child

retain attorneys until a match is found. Similarly, pregnant women planning to relinquish

their newborns for adoption are responsible for their own living and medical costs during the

pregnancy until matched, when the agreed-upon adoptive parents often cover these expenses.

An alternative way to model waiting costs would be to consider agents’payoffs as discounted

match utilities. As a first step, our criterion allows us for greater tractability. To see why,

notice that, in the presence of discounting, the benefits of matching an agent would depend

on the number of periods that agent already spent on the market. The relevant state space for

the designer would then be vast. Also, the randomness inherent in the environment suggests

that the timing of matches is potentially a random variable. Keeping track of expected

11Furthermore, the age of a donor is known to have a strong impact on the expected survival of a graft
(see, e.g., Gjertson, 2004 and Oien et al., 2007) and younger recipients have been suggested as the natural
recipients of higher-quality organs (see Stein, 2011). Our assumptions then fit a world in which both patients
and donors are classified as “young”or “mature”and patients’and donors’age distributions are similar.
12Allowing for independent arrivals of squares and rounds introduces new challenges. Indeed, consider a

symmetric environment in which a square arrives with probability q each period and, similarly, a round arrives
with probability q each period. In this setting, there is a probability that a long queue of squares (or rounds)
would form with no round (or square) available, of whichever type. In contrast with the setting we study in
the paper, for any fixed value of the outside option, the optimal mechanism involves retiring agents from the
market without matches when a suffi ciently long queue of individuals of their type is formed.
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exponentially discounted values then introduces non-trivial complications.13

Last, we assume there are only two types of squares and rounds for tractability. While this

corresponds to a coarse description of many applications, the insights delivered by our binary-

type analysis are useful for tackling environments with richer type sets (for more details, see

Baccara, Lee, and Yariv, 2018).

3 Optimal Dynamic Matching

3.1 The Matching Process

At any time t ∈ {1, 2, . . . }, after a new square-round pair enters the market, a queue corre-
sponds to a vector st = (sH , sL, sh, sl), where each entry is the stock of squares or rounds of a

particular type waiting in line. We represent the profile of matches created at time t by the

vector mt = (mHh,mHl,mLh,mLl). For every st ∈ Z4
+, a match profile m

t ∈ Z4
+ has to satisfy

a feasibility condition

mxh +mxl ≤ sx for x ∈ {H,L},

mHy +mLy ≤ sy for y ∈ {h, l}.

The surplus generated by the matches is:

S(m) ≡
∑

(x,y)∈{H,L}×{h,l}

mxyUxy.

We denote the volume of remaining agents by kt = (kH , kL, kh, kl), where

kx = sx − (mxh +mxl) for x ∈ {H,L},

ky = sy − (mHy +mLy) for y ∈ {h, l}.

The total waiting costs incurred by the remaining agents in period t are then:

C(s,m) ≡ c

 ∑
x∈{H,L,h,l}

kx

 .

Finally, the welfare generated at time t is

w(s,m) ≡ S(m)− C(s,m),

13See Section 1.2 for a discussion of several follow-up papers to ours that introduce discounting without
fully characterizing the optimal mechanism.
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if the profile of matches m is feasible given the stock s, and w(s,m) = −∞ otherwise. At

time t+ 1, the queue st+1 is determined by the number of remaining agents kt and the types

of agents arriving at t + 1. As an initial condition, we have k0 = (0, 0, 0, 0). A mechanism µ

is any rule governing matching profiles. We evaluate a mechanism by considering the average

welfare it generates:

v(µ) ≡ lim inf
T→∞

1

T
Eµ

[
T∑
t=1

w(st,mt)

]
. (1)

For any mechanism µ, v(µ) ∈ R ∪ {−∞}, and the average welfare is bounded above by UHh.
This criterion allows us to focus on the long-run performance of mechanisms. We say that µ∗

is optimal if v(µ∗) = supµ v(µ).14

We will consider the class of mechanisms that satisfy the following two assumptions. Re-

stricting attention to mechanisms that satisfy Assumptions 1 and 2 implies no loss of generality,

but simplifies the presentation (see Lemma A1 in the Appendix for details).

Assumption 1 (H, h) and (L, l) pairs are matched as soon as they become available;

Assumption 2 No more than U
2c
squares (and rounds) are ever held in the market.

Assumption 1 requires an immediate match of congruent pairs. Intuitively, the only reason

to hold on to, say, an (H, h) pair is to create future (H, l) or (L, h) pairs. However, super-

modularity implies that this is inferior to matching immediately the (H, h) pair and then

matching the future (L, l) pair. To understand Assumption 2, recall that U captures the

extent of super-modularity of preferences– the utilitarian benefit of matching congruent over

incongruent pairs. Suppose more than U/2c squares (equivalently, rounds) are held in the

market. This implies that at least one pair has been waiting for more than U/2c periods.

The utility benefit for that pair is at most U, while the per-period cost is 2c. It would have

been more effi cient to match that pair immediately. Assumptions 1 and 2 guarantee that

the relevant state space, corresponding to possible queue realizations, is finite. Standard

techniques (see Ross, 2014, and details in the Appendix) allow us to focus on the set of

14This is a fairly standard approach, see, e.g., Ross (2014). We could have, in fact, applied an even stronger
notion of optimality following Puterman (2005), where a mechanism µ would be called “optimal”if

lim inf
T→∞

1

T
Eµ

[
T∑
t=1

w(st,mt)

]
≥ lim sup

T→∞

1

T
Eµ′

[
T∑
t=1

w(st,mt)

]

for any other mechanism µ′.
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stationary and deterministic mechanisms (SD-mechanisms). The matches created by a SD-

mechanism µSD : Z4
+ → Z4

+ at every period depend only on the queue in place at that period.

3.2 Structure of Optimal Dynamic Mechanisms

Assumptions 1 and 2 imply that, at any point in time, an optimal dynamic mechanism entails

queues of only H-squares and l-rounds, or only L-squares and h-rounds. That is, the queue

can take the form of either (k, 0, 0, k) or (0, k, k, 0), for some k ≥ 0. The optimal dynamic

mechanism is then identified by the maximal stock of H-squares (and l-rounds) and the

maximal stock of h-rounds (and L-squares) that are kept waiting in queue. In the following

proposition we characterize the structure of the optimal mechanism.15

Proposition 1 (Optimal Mechanisms) An optimal dynamic mechanism is identified by a

pair of thresholds (k̄H , k̄h) ∈ Z+ such that

1. if more than k̄H H-squares are present, excess (H, l) pairs are matched immediately,

and

2. if more than k̄h h-rounds are present, excess (L, h) pairs are matched immediately.

As will soon be stated formally, the symmetry of our environment assures that, generi-

cally, an optimal mechanism corresponds to symmetric thresholds: k̄ = k̄H = k̄h. A dynamic

mechanism with symmetric thresholds (k̄, k̄) as defined in Proposition 1 is depicted in Figure

1, where kHh = kH − kh captures the difference between the length of the queue of H-squares
and the length of the queue of h-rounds. We call kHh the (signed) length of the H-h queue.

This process induces the following Markov chain. Let ktHh denote the number of H-squares

(or l-rounds) minus the number of h-rounds (or L-squares) at the end of time t, after the arrival

of that period’s square-round pair and any matches imposed by the mechanism. If an (H, h)

or a (L, l) pair arrive in period t + 1, the mechanism matches an (H, h) or an (L, l) pair

immediately, and the state remains the same: ktHh = kt+1
Hh . Suppose an (H, l) pair arrives in

period t + 1. As long as 0 ≤ ktHh < k̄, the mechanism creates no matches and kt+1
Hh becomes

15In principle, there could be multiple mechanisms that are identified with the same thresholds. For instance,
consider a mechanism in which an (H, l) pair is matched whenever there are k̄H+1 or k̄H+2 H-squares present.
Such a mechanism would be equivalent to a mechanism that matches (H, l) pairs only when there are precisely
k̄H + 1 H-squares present. We focus only on the thresholds with the minimal magnitude, which identify
outcomes fully, and ignore multiplicity that arises from prescriptions of the social planner over events that are
never reached.
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Figure 1: Structure of Optimal and Decentralized Matching Processes

ktHh + 1. If ktHh < 0, the mechanism creates one (H, h) match and one (L, l) match, and kt+1
Hh

becomes ktHh+ 1. Finally, if ktHh = k̄, the mechanism creates one (H, l) pair, and kt+1
Hh remains

the same, kt+1
Hh = ktHh = k̄. Analogous transitions occur with the arrival of an (L, h) pair.

Therefore, we can describe the probabilistic transition as follows. Denote by

xt ≡ (xt−k̄, x
t
−k̄+1, ..., x

t
k̄−1, x

t
k̄)
tr ∈ {0, 1}2k̄+1

the timed vector capturing the state, xti = 1(ktHh = i). That is, xti is an indicator that takes

the value of 1 if the state is i and 0 otherwise. Then,

xt+1 = Tk̄x
t,

where

Tk̄ =



1− p(1− p) p(1− p) . . . 0 0
p(1− p) 1− 2p(1− p) . . . 0 0

0 p(1− p) . . .
...

...
. . .

...
...

. . . p(1− p) 0
0 0 . . . 1− 2p(1− p) p(1− p)
0 0 . . . p(1− p) 1− p(1− p)


. (2)

This Markov chain is ergodic (i.e., irreducible, aperiodic, and positively recurrent). Therefore,

an optimal mechanism corresponds to a matching process that reaches a steady state with a

unique stationary distribution. For Tk̄, the steady-state distribution is uniform so that each

state kHh = −k̄, . . . , k̄ occurs with an equal probability of 1
2k̄+1

.

3.3 Optimal Thresholds

In order to characterize the optimal threshold, we first evaluate the welfare corresponding to

any arbitrary symmetric threshold. First, we compute the average total waiting costs incurred
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by agents waiting in line for one period of time. Since during the transition from time t − 1

to time t, 2|kt−1
Hh | agents wait in line, the total costs of waiting incurred during this one time

period is 2|kt−1
Hh |c. Thus, a mechanism with threshold k̄ results in expected total costs of

waiting equal to

1

2k̄ + 1

 k̄∑
kHh=−k̄

2|kHh|

 c =
2k̄(k̄ + 1)c

2k̄ + 1
.

Next, we compute the average total surplus generated during one time period, tracking

the Markov process described above. A newly-arrived pair is of type (H, h) with probability

p2, in which case the optimal mechanism generates a surplus equal to UHh. Similarly, when a

new pair of type (L, l) arrives, which occurs with probability (1− p)2, the optimal mechanism

generates a surplus equal to ULl. Suppose an (H, l) pair arrives at time t. If kt−1
Hh < 0,

the mechanism creates one (H, h) pair and one (L, l) pair, generating a surplus equal to

UHh + ULl. If 0 ≤ kt−1
Hh < k̄, the mechanism creates no matches (and no additional surplus),

and if kt−1
Hh = k̄, the mechanism creates one (H, l) pair and generates a surplus equal to UHl.

Analogous conclusions pertain to the case in which an (L, h) pair arrives. Thus, a mechanism

with threshold k̄ generates an expected total surplus equal to

p2UHh + (1− p)2ULl +
2p(1− p)

2k̄ + 1

[
k̄ (UHh + ULl) +

UHl + ULh
2

]
= pUHh + (1− p)ULl −

p(1− p)U
2k̄ + 1

.

Therefore, the net expected total welfare per period, accounting for waiting costs, is:

pUHh + (1− p)ULl −
p(1− p)U

2k̄ + 1
− 2k̄(k̄ + 1)c

2k̄ + 1
. (3)

The optimal threshold k̄opt maximizes the welfare as given in (3). The following proposition

summarizes our discussion and provides the full characterization of the optimal mechanism.

Proposition 2 (Optimal Thresholds) The threshold

k̄opt =

⌊√
p(1− p)U

2c

⌋
identifies an optimal dynamic mechanism. In this optimal mechanism, all available

(H, h) and (L, l) pairs, and any number of (H, l) or (L, h) pairs exceeding k̄opt, are

matched immediately. Furthermore, the optimal mechanism is generically unique.16

16Multiplicity arises only when
√

p(1−p)U
2c is an integer.
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The optimal threshold increases with the probability of any incongruent pair, p(1 − p),

and with the degree of super-modularity U, which reflects the value of assortative matches. It

decreases with waiting costs. In fact, when waiting costs are prohibitively high, namely when

c > p(1−p)U
2

, the maximal queue length is k̄opt = 0 and all matches are instantaneous.

3.4 Welfare

We now turn to the expected per-period welfare in the steady state under the optimal mech-

anism. Were we to consider no costs of waiting, the optimal mechanism would naturally

entail long waits to get the maximal possible match surplus asymptotically by matching only

congruent pairs. We denote the resulting welfare by S∞ ≡ pUHh + (1− p)ULl.
The optimal threshold identified in Proposition 2 allows us to characterize the welfare

achieved by the optimal mechanism through equation (3) and to get the following corollary.

Corollary 1 (Optimal Welfare) The welfare under the optimal mechanism is given by

W opt(c) = S∞−Θ(c), where Θ(c) is continuous, increasing, and concave in c, lim
c→0

Θ(c) =

0, and Θ(c) = p(1− p)U for all c ≥ p(1−p)U
2

.

As waiting costs approach 0, the welfare induced by the optimal mechanism approaches

S∞. For costs large enough, the optimal mechanism matches all square-round pairs instanta-

neously as they arrive and the resulting welfare is S∞ − p(1 − p)U. For intermediate costs,

the optimal mechanism generates welfare that is naturally in between these two values.17 ,18

The observation that welfare under the optimal mechanism decreases as c increases is rather

intuitive. Indeed, suppose c1 > c2.Were we to implement the optimal mechanism with waiting

cost c1 when the waiting cost is c2, the distribution of matches would remain identical, while

waiting costs would go down, thereby leading to greater welfare overall. Thus, the optimal

mechanism generates greater welfare with waiting cost c2 than c1. The amount by which

welfare decreases when waiting costs increase depends on the number of agents expected to

17The value of S∞ is effectively the analogue of the value generated by an “omnsicient” planner in our
setting, which is used as one benchmark in Akbarpour, Li, and Oveis Gharan (2018). Corollary 1 suggests
that the omniscient planner’s value is a valid feasible benchmark when waiting costs vanish.
18In the Appendix, we provide the analytical formula for Θ(c) in terms of the fundamental parameters of

our setting. In fact, simple algebraic manipulations imply that:

S∞ −
√

2p(1− p)Uc− c ≤W opt(c) ≤ S∞ −
√

2p(1− p)Uc+ c.
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wait in line in the steady state. The higher the waiting costs, the lower the number of agents

waiting in line on average. Therefore, the impact of an increase in costs by a fixed increment

is greater at smaller costs, yielding the concavity of Θ(c).19

4 Discretionary Matching

Many dynamic matching processes are in essence discretionary, in the sense that participants

have the choice of declining a match they do not wish to form: child adoption in the US and

abroad, job searches in many industries, etc. It is therefore important to understand the impli-

cations of discretionary dynamics, particularly when considering centralized interventions. In

this section, we provide a framework for analyzing a class of discretionary matching processes.

In our discretionary matching process, we assume individuals join the market in sequence

and decide when to match with a potential partner immediately and when to stay in the

market and wait for a potentially superior match. While the discretionary setting we study still

requires some centralized governance, as matches occur according to some order, it provides

a convenient benchmark for studying dynamic matching markets that are lightly regulated.

We assume that at each period t, there are three stages. First, a square and round

enter the market with random attributes as before: with probability p the square is an H-

square and with probability p the round is an h-round. Second, individuals of each type are

ordered by some priority rule that we describe formally below. In the third stage, each square

and round declare their demands– whether a square will match only with an h-round, or

is willing to match with either an h-round or an l-round, and whether a round will match

only with an H-square, or with either an H-square or an L-square. Given the order and

the participants’demands, the market clears sequentially according to the priority rule. Any

remaining participants proceed to period t+ 1 at the additional cost of c.

4.1 The Matching Process

In each period t, one square wt and one round rt arrive at the market, and their types are

realized. Upon their arrival, a period-t stage-game begins:

Gt ≡ {I t, (Di)i∈It , φ, (ui(·;φ) : Πi∈ItDi → R)∀i∈It}.
19Continuity follows directly from concavity. Alternatively, fix any mechanism that is optimal for some

waiting costs. An increase in waiting costs reduces the resulting welfare continuously, in fact linearly.
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The components of Gt are defined as follows. The set of players is I t ≡ H t∪Lt∪ht∪ lt, where
H t ⊆ {xt′ : 1 ≤ t′ ≤ t} is the set of H-squares present in the market in period t, and the
other sets, Lt, ht, and lt, are defined similarly. Each H-square, say player i, in I t chooses an

action in Di = {h, l}, with h denoting a demand for only h-rounds and l denoting a demand
for either type of round.20 Action sets for other agents’ types are defined analogously. A

priority rule φ assigns a linear order over each set H t, Lt, ht, and lt. First, we consider a

first-in-first-out (FIFO) protocol, which assigns a linear order � over, say, H t such that

∀xt′ , xt′′ ∈ H t, xt
′ � xt

′′ ⇐⇒ t′ < t′′ ≤ t.

There is anecdotal evidence that order of arrivals affects the order of matches in many

markets, and FIFO is a commonly used protocol. For instance, in the child adoption context,

many countries follow a FIFO protocol to match relinquished children to adoptive parents.21

In Section 6, we discuss alternative priority protocols.

The stage-game payoffs are determined by sequential market clearing. First, we take H-

squares and h-rounds in the order induced by φ and form as many (H, h) pairs as possible

(regardless of their demands).22 If there are remaining H-squares demanding l-rounds, they

are matched with l-rounds sequentially according to φ and independently of the demands made

by the l-rounds. h-rounds demanding L-squares are matched analogously. All remaining L-

squares and l-rounds who are flexible in their demands form matches sequentially in the order

induced by φ. The stage-game payoff for a type-x agent matched with a type-y agent is Ux(y).

If a player remains unmatched, her stage-game payoff is −c.
We complete the definition of a dynamic discretionary matching game by characterizing

the evolution of the stage-games Gt, and each player’s dynamic-game payoff. The initial set

of players is I0 ≡ ∅. All players in I t who remain unmatched in period t, together with new
arrivals wt+1 and rt+1, form I t+1. Consider a player i, who arrives in period t and is matched

at t′′ ∈ Z+ ∪ {∞}. Such a player receives stage-game payoffs (uti, u
t+1
i , . . . ), and a dynamic

game payoff
∑∞

t′=t u
t′
i (∈ R ∪ {−∞}), where ut′′i is i’s match utility, ut

′
i = 0 for t′ > t′′, and

ut
′
i = −c for any t′ < t′′.

20This restriction on the action space is made for simplicity of exposition. An equilibrium similar to the one
we describe below arises if we allow players to demand only inferior matches on the other side of the market,
or to submit a demand for no one at all.
21For example, see the protocol adopted by the China Center of Children’s Welfare and Adoption (CCCWA)

here: http://www.aacadoption.com/programs/china-program.html.
22This market-clearing assumption allows us to simplify some steps of the proofs, and avoid ineffi cient

equilibria in which (H,h) pairs remain on the market unmatched.
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The dynamic game has complete information and arbitrary (dynamic) strategies. Each

player i, say an H-square, chooses a demand every period she remains in the market, since

her arrival till she matches. A (dynamic) strategy σi indicates the probability of demanding

an h-round in each of these periods and can depend on the complete history from t = 0. As

before, let st = (stH , s
t
L, s

t
h, s

t
l) be the state (or stock) at period t, and let q

t
i ∈ Z+ be player i’s

rank according to φ in period t.23 Let θti ≡ (st, qi) denote an augmented state for player i.

Definition 1 A strategy σi is a stationary and deterministic strategy (SD-strategy) for an

H-square i if there exists ψHi : {(s, q) ∈ Z5
+} → {h, l} such that, for any t such that

i ∈ H t and θti = (st, qti), player i demands ψ
H
i (st, qti).

We similarly define SD-strategies for L-squares, h-rounds, and l-rounds. A symmetric,

stationary, and deterministic strategy profile, which we name stationary∗ strategy profile, is

a profile of SD-strategies, such that all players of the same type use the same strategy, i.e.

ψxi = ψx for all t, i ∈ xt, and x = H,L, h, l. We denote a stationary∗ strategy profile by

Ψ = (ψH , ψL, ψh, ψl).

Definition 2 A stationary∗ strategy-profile Ψ is a stationary∗ equilibrium if it is an equilib-

rium of the dynamic matching game.24

For simplicity, we assume a symmetric setting (results pertaining to asymmetric settings

appear in Section 7):

UH(h)− UH(l) = Uh(H)− Uh(L) and UL(h)− UL(l) = Ul(H)− Ul(L),

and that the environment is regular: p(UH(h) − UH(l)) 6= kc for all natural numbers k ∈ N.
Regularity assures that neither squares nor rounds are ever indifferent between waiting in

queue and matching immediately with an available partner.25

23That is, under FIFO, qti = 1 if player i arrived before all other H-squares in Ht, qti = 2 if player i arrived
second among all other H-squares in Ht, and so on.
24In a stationary∗ equilibrium, we allow a player’s deviation to be any dynamic strategy, including history-

dependent and random.
25The assumption of regularity simplifies presentation but is not crucial. Similar analysis follows without it

for any arbitrary tie-breaking rule.
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4.2 Equilibrium Characterization with the FIFO Protocol

In this section, we present necessary conditions for a stationary∗ equilibrium that are suffi cient

to compute equilibrium welfare. We guarantee the existence of stationary∗ equilibria and

provide their characterization in the Appendix.

By construction, at the beginning of a period, the queue cannot entail both H-squares and

h-rounds. As before, we denote the (signed) length of the H-h queue after an arrival of a new

pair by sHh ≡ sH − sh, and after agents form matches by kHh ≡ kH − kh. We first consider
the decisions of H-squares (analogous analysis holds for h-rounds). Suppose an H-square

arrives at the market and an h-round is available, one that had either been waiting in the

queue or one that has just arrived as well. In this case, an H-square is matched immediately

to an h-round, the identities of whom are prescribed by the order of arrival. In particular,

if the arriving H-square is the first in line, that square is matched to an h-round. If there

are H-squares already in queue, the available h-round must have arrived with our H-square,

and is matched with the first H-square in the queue. The newly arrived H-square then has a

choice between waiting in line and matching with an l-round. However, this square’s decision

is equivalent to that of the last H-square who arrived and decided to wait. Therefore, in a

stationary∗ equilibrium, the new H-square waits and the queues remain as they were.

Suppose now that an H-square enters the market and no h-round is available. Then,

there is at least one l-round available. Thus, the H-square has to decide whether to match

immediately with an l-round or to wait, based on the number of H-squares already waiting.

An immediate match with an l-round delivers UH(l), whereas waiting in line till eventually

matching with an h-round delivers UH(h) at an uncertain waiting cost.

Note that if an H-square decides to wait in the queue, she will wait until matching with

an h-round, rather than match with an l-round at a later point. Indeed, as matches form on a

FIFO basis, the H-square’s position in the queue moves up over time, and the expected time

until matching with an h-round becomes shorter. The expected waiting time till a match with

an h-round is therefore solely determined by the number of other H-squares who precede her

in the queue. The following result identifies bounds on the size of the H-h queue:

Lemma 1 (FIFO Thresholds) In all stationary∗ equilibria under FIFO, in all periods,

−k̄fifo ≤ kHh ≤ k̄fifo, where

k̄fifo ≡
⌊
p(UH(h)− UH(l))

c

⌋
=

⌊
p(Uh(H)− Uh(L))

c

⌋
. (4)
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Intuitively, the time till an h-round enters the market is distributed geometrically (with

parameter p), so the expected time till an h-round arrives at the market is 1
p
. AnH-square who

is k-th in line in the queue will be matched when the k-th h-round arrives, which is expected

to occur in k
p
periods. The expected waiting costs are therefore kc

p
, which generate an increase

in match utility of UH(h) − UH(l) (relative to matching with an l-round immediately). An

H-square will wait as long as the expected benefit of waiting exceeds its costs, i.e., whenever
kc
p
< UH(h) − UH(l), which is the comparison underlying the maximal size of the queue

described in Lemma 1. Our regularity assumption further guarantees that an H-square or an

h-round are never indifferent between waiting in line and matching immediately. Whenever

there are fewer than k̄fifo H-squares in the queue, a new H-square will wait in the market.

Whenever there are k̄fifo or more H-squares in the queue, the new H-square prefers to match

with an l-round immediately. An analogous description holds for h-rounds and our symmetry

assumptions assure that the maximal queue length is identical for H-squares and h-rounds.26

We now turn to the decisions of L-squares and l-rounds. An l-round (similarly, an L-

square) may decide to wait, hoping to match with an H-square who will become available

when the line for H-squares exceeds k̄fifo. In principle, there are two effects at work. The

first is similar to that experienced by the H-squares waiting in line: the longer the queue

of l-rounds already waiting, the longer a new l-round has to wait. The second effect is due

to H-squares’equilibrium behavior: the longer is the queue, the closer H-squares are to the

threshold k̄fifo and to the point of accepting matches with l-rounds. As it turns out, at

least the last l-round in the queue has an incentive to match immediately with any square.

Intuitively, consider the first l-round, say player i, arriving at the market. There cannot

be other H-squares waiting in the market since any such squares would have arrived with

l-rounds, contradicting our l-round being first in line. Suppose player i arrives with an L-

square. By Lemma 1, the first k̄fifo H-squares wait in line until they are matched with an

h-round. Thus, player i has to wait for the arrival of at least k̄fifo + 1 H-squares to match

with an H-square. This wait is too long for agent i to justify turning down a match with an

L-square. Indeed, the expected cost of waiting until the (k̄fifo + 1)-th arriving H-square is
(k̄fifo+1)c

p
, which is strictly greater than the benefit from waiting since

Ul(H)− Ul(L) < Uh(H)− Uh(L) = UH(h)− UH(l) <

(
k̄fifo + 1

)
c

p
,

26In the Appendix, we show that in all stationary∗ equilibria the full support of the H-h queue is
{−k̄fifo, .., k̄fifo}. Therefore, the bounds described in this lemma are achieved in equilibrium.
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where the last inequality follows from the definition of k̄fifo. It follows that our player i

would therefore prefer to match with an L-square, who is available, immediately. In fact, this

intuition generalizes and yields the following result.

Lemma 2 (Equilibrium under FIFO) There exists a stationary∗ equilibrium such that

there are never both an L-square and an l-round waiting in the market.

Lemma 2 implies that there exists a stationary∗ equilibrium that follows a protocol similar

to that implemented by the optimal mechanism, though the threshold governing when incon-

gruent matches are formed, k̄fifo, may differ from the optimal threshold k̄opt. Lemma 1 and

its discussion in the Appendix guarantee that, since the behavior of H-squares and h-rounds

is the same in all stationary∗ equilibria, so is the welfare generated by matches involving H-

squares and h-rounds. Therefore, the stationary∗ equilibrium described by Lemma 2, in which

L-squares and l-rounds do not delay matching with one another, is the one that maximizes

welfare, as stated in the following corollary.

Corollary 2 The stationary∗ equilibrium in which there are never both an L-square and an

l-round waiting in the market is welfare-maximizing among all stationary∗ equilibria

under FIFO.

4.3 Steady State of Discretionary Matching

As for the optimal mechanism, the length of the H-h queue kHh in the equilibrium described

in Lemma 2 and Corollary 2 is characterized by a Markov chain with a transition matrix

analogous to that described in Section 3.2. Similar analysis allows the characterization of the

equilibrium steady state of the discretionary process under the FIFO protocol.

Proposition 3 (Discretionary Steady State) The welfare-maximizing stationary∗ equi-

librium under FIFO is associated with a unique steady state distribution over queue

lengths, such that the length of the H-h queue kHh = kH − kh is uniformly distrib-

uted over {−k̄fifo, . . . , k̄fifo} and, in any period, the queues contain only H-squares and
l-rounds or only h-rounds and L-squares.

The threshold k̄fifo is determined by the decisions of H-squares and h-rounds to wait, as

specified in Lemma 1. The crucial difference between the discretionary and optimal mechanism
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is the threshold placed on the maximal stock of H-squares or h-rounds waiting. A decision to

wait in the market by, say, a square imposes a negative externality on succeeding squares, as

it potentially affects their waiting time, and possibly the quality of their matches27, as well as

on the round she would otherwise match with. However, a decision to wait can also impose

a positive externality on future desirable agents on the other side of the market, who would

find a ready desirable agent upon arrival.

To glean some intuition for the relative strength of these externalities, consider the extreme

case in which, in the discretionary process, matches are immediate (k̄fifo = 0), which happens

when c
p
> UH(h) − UH(l). In such a market, consider an (H, l) pair arriving when no other

agents are present. In the discretionary setting, the pair would match immediately. Might a

social planner want to keep this pair waiting? Suppose the planner holds on to the (H, l) pair

until an h-round arrives with a square of either type. At that point, the H-square is to be

matched with the h-round, while the l-round is to be matched with the newly-arrived square.

To simplify our illustration, suppose that all other participants are matched instantaneously.

The H-square certainly does not benefit from this imposed wait (else, she would wait even in

the discretionary setting). The cost imposed on the l-round entailed by waiting for an h-round

is c/p. Now, the anticipated h-round may arrive with either an H-square, with probability p,

or with an L-square, with probability 1− p. In the latter case, the positive externality of our
H-square on this h-round comes to light– the h-round matches with anH-square instead of an

L-square he would match with otherwise, generating a marginal benefit of UH(h)−UH(l) (since

match payoffs are symmetric across market sides). This positive externality is overwhelmed

by the cost of waiting incurred by the l-round, even ignoring all other negative externalities

on the match qualities of the original l-round as well as the square arriving with the h-

round, since c
p
> UH(h) − UH(l) > (1 − p)(UH(h) − UH(l)). In particular, delaying a match

is sub-optimal from the social planner’s perspective. This intuition extends– the negative

externalities dominate and the optimal mechanism is always governed by a smaller threshold

for waiting than the one selected through equilibrium in the discretionary process:

Corollary 3 (Thresholds’Comparison) Maximal waiting queues are longer under FIFO

than they are under the optimal mechanism. That is, k̄opt ≤ k̄fifo, with strict inequality

for suffi ciently small waiting costs c.
27From a welfare perspective, the externality on the quality of the match is of less importance. As long as

a social planner views identical agents as interchangeable, an immediate mismatch or a later mismatch have
similar welfare consequences.
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4.4 Welfare

Since the protocols are similar except for the queues’ thresholds, the expected per-period

welfare in the steady state characterized in Proposition 3 can be found using an analogous

derivation to that carried out for the optimal mechanism. This derivation leads to an expres-

sion mirroring equation (3), accounting for the discretionary process’threshold k̄fifo. Namely,

the expected per-period net welfare is given by:

W fifo(c) = S∞ −
p(1− p)U
2k̄fifo + 1

− 2k̄fifo(k̄fifo + 1)c

2k̄fifo + 1
,

where k̄fifo is defined in (4). To summarize, we have the following corollary:

Corollary 4 (Decentralized Welfare) The maximum equilibrium welfare under FIFO is

given by W fifo(c) = S∞ − Ψ(c), where lim
c→0

Ψ(c) = p (UH(h)− UH(l)) , and Ψ(c) =

p(1− p)U for all c ≥ p (UH(h)− UH(l)) .

Recall Corollary 1, which characterized the welfare under the optimal mechanism. By

definition, the welfare generated under the optimal mechanism is higher than that generated

by the discretionary process, so that Θ(c) ≤ Ψ(c) for all c. While the optimal mechanism

generates welfare that is decreasing in waiting costs, this is not necessarily the case under

the discretionary process. Furthermore, while the welfare under the optimal mechanism ap-

proaches S∞ as waiting costs diminish, this is not the case under the discretionary process. As

waiting costs become very small, there is a race between two forces. For any given threshold,

the overall waiting costs decline. However, in equilibrium, discretionary thresholds increase,

leading to greater expected wait times. As it turns out, the balance between these two forces

generates significant welfare losses, given by p (UH(h)− UH(l)), even for vanishing costs.

5 Welfare Comparisons

By construction, the optimal mechanism generates welfare that is at least as high as that

generated by the discretionary process.28 In this section, we inspect how the welfare wedge

28It is possible to show that the optimal mechanism presents a Pareto improvement with respect to the
decentralized setting. In fact, it is easy to see that L-squares and l-rounds are better off under the optimal
mechanism (as it implies better matches and shorter waiting times). Moreover, one can show that, as long as
k̄opt ≥ 2, the expected payoff of H-squares and h-rounds as they enter the market is higher under the optimal
mechanism than under the discretionary process as well.
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responds to the underlying parameters of the environment, suggesting the settings in which

centralized intervention might be particularly useful. The following proposition captures the

effects on the welfare wedge W opt(c) − W fifo(c) of the waiting costs c, the frequency p of

H-squares or h-rounds, and the utility benefit of desirable types from matching with desirable

types relative to less desirable ones.

Proposition 4 (Welfare Wedge —Comparative Statics)

1. For any interval [c, c), where c > 0, there is a partition {[ci, ci+1)}M−1
i=1 , where c = c1 <

c2 < ... < cM = c, such that W opt(c) − W fifo(c) is continuous and increasing over

(ci, ci+1) and

W opt(ci)−W fifo(ci) > W opt(ci+1)−W fifo(ci+1)

for all i = 1, ...,M − 1.

2. As c becomes vanishingly small, the welfare gap W opt(c)−W fifo(c) converges to a value

that is increasing in p ∈ (0, 1) and in UH(h)− UH(l).

To see the intuition for the comparative statics corresponding to waiting costs, notice that

an increase in costs has two effects on the welfare gap. Since the equilibrium threshold under

the discretionary process is greater than the optimal threshold (Corollary 3), an increase in

waiting costs has a direct effect of magnifying the welfare gap. Nonetheless, there is also

an indirect effect of an increase in waiting costs that arises from the potential changes in the

induced thresholds. Consider a slight increase in waiting costs such that the optimal threshold

does not change, but the discretionary threshold decreases. The discretionary process is then

“closer”to the optimal process– both the matching surplus and the waiting costs are closer

and the welfare gap decreases. In fact, as costs become prohibitively high, both processes lead

to instantaneous matches and identical welfare levels. As we show in the proof of Proposition

4, the indirect effect overwhelms the direct effect at precisely such transition points and acts

to shrink the welfare gap. The construction of the partition is done as follows. Each atom

[ci, ci+1) of the partition corresponds to constant thresholds under the discretionary process.

Over these intervals, only the direct effect operates and the welfare gap is increasing. Each of

the endpoints {ci}i corresponds to a decrease of the discretionary threshold by one. Therefore,
when comparing two such endpoints, the indirect effect kicks in and the decreasing trend of

the welfare gap emerges. Figure 2 depicts the resulting pattern the welfare gap exhibits for
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Figure 2: Welfare Gap between Optimal and Discretionary Matching (FIFO) as a Function
of Costs

UH(h) = Uh(H) = 3, UH(l) = Uh(L) = UL(h) = Ul(H) = 1, UL(l) = Ul(L) = 0, and p = 0.3.

As suggested by the proposition,W opt(c)−W fifo(c) is piece-wise increasing in c. Nevertheless,

overall, the gap has a decreasing trend.

To glean some intuition on the comparative statics the welfare gap displays with respect to

p, consider two type distributions governed by p1 and p2 such that p1 < p2 = mp1, m > 1. The

individual incentives to wait for H-squares and h-rounds are higher under p2 than under p1. In

fact, in the discretionary setting, the distribution of steady-state queue length is the uniform

distribution where, from (4), under p2, roughly 1−1/m of the probability mass is allocated to

queue lengths larger than those realized under p1. For each of these large steady state queue

lengths, we have more pairs of agents waiting, i.e., increased per-period waiting costs. The

optimal mechanism internalizes the negative externalities, so the effect of the increased waiting

costs is weaker. On the other hand, the benefit of this increase in queue length is a lower

chance of producing mismatches. However, for suffi ciently low c, the match surplus under

p1 is already close to its optimum of S∞ and this effect is weak; in particular, the difference

in terms of match surplus that the optimal and discretionary processes generate is similar

under p1 and p2. Therefore, for suffi ciently low c, the dominant effect is the one produced

by the difference in expected waiting costs, which generates our comparative statics.29 Note

29In fact, we can show that for any ∆p > 0, there exists δ > 0 such that for every c < δ and p ∈ [0, 1−∆p],
the welfare wedge under p+ ∆p and c is greater than under p and c. Furthermore, δ → 0 as ∆p→ 0.
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that as p approaches 0 or 1, both the optimal mechanism and the discretionary processes

generate similar welfare levels as in those cases incongruent pairs arrive at a vanishing rate.

The intuition for the comparative statics pertaining to UH(h)− UH(l) follows identical lines.

Going back to our assumption of super-modular preferences, the construction of the op-

timal mechanism would remain essentially identical were preferences sub-modular (with an

appropriate relabeling of market participants). However, in the discretionary setting, sub-

modular preferences would lead to a negative welfare effect compounding the negative ex-

ternalities present in our setup. Namely, individual incentives would be misaligned with

market-wide ones. In that respect, our comparison of optimal and discretionary processes

assuming super-modular preferences is a conservative one.

Similarly, considering waiting costs that differ across the two sides of the market would

lead to a greater welfare wedge as well. Intuitively, suppose that squares experience a waiting

cost of cS and rounds experience a waiting cost of cR, where cS > cR, with an average cost

of c = (cS + cR)/2. The optimal mechanism with asymmetric costs would coincide with that

corresponding to identical costs of c since per-pair costs are the same in both cases. In the

discretionary process, H-squares would be willing to wait when the queue of H-squares is

no longer than k̄fifoS and h-rounds would be willing to wait when the queue of h-rounds is

no longer than k̄fifoR , where k̄fifoS =
⌊
p(UH(h)−UH(l))

cS

⌋
and k̄fifoR =

⌊
p(Uh(H)−Uh(L))

cR

⌋
. Suppose

p(UH(h)−UH(l))
cx

∈ N for x = S,R to avoid rounding issues. From convexity, it follows that the

threshold k̄fifo corresponding to identical costs of c satisfies k̄fifo ≤ (k̄fifoS +k̄fifoR )/2. Therefore,

the excessive waiting discretionary processes exhibit would be even more pronounced when

costs are asymmetric across market sides.

6 Alternative Protocols

So far, we have shown that intervention in dynamic matching markets can have a substan-

tial impact on welfare, at least when centralization utilizes the optimal dynamic mechanism.

Nonetheless, the full-fledged optimal mechanism may be hard to implement. It requires that

the formation of matches, even those of individuals who would prefer to wait in the market,

be within the purview of the centralized planner. It also requires the central planner to mon-

itor the market continuously to determine when matches should be formed, which may be

administratively costly. Improvements to discretionary settings under FIFO can be achieved

by mechanisms that relax one of these two requirements. To address the first issue, one can
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consider a discretionary setting in which per-period taxes are introduced for the agents that

decide to wait. Our characterization of the optimal mechanism allows the identification of

a budget-balanced tax scheme that implements the optimal welfare levels without distorting

agents’incentives to enter the market to begin with. To address the second issue, one can

consider an alternative protocol in which the centralized clearinghouse matches all available

agents every fixed number of periods. Details of these alternative protocols are available in

the working-paper version (Baccara, Lee, and Yariv, 2018).

In this section, we analyze an alternative setting that does not require continuous market

monitoring and can provide substantial welfare improvements over the discretionary matching

process under FIFO. While the FIFO protocol we analyze resembles discretionary processes in

various applications, it generates excessive waiting. It is then natural to consider alternative

protocols in which waiting is disciplined. We consider here the often-discussed last-in-first-out

(LIFO) protocol (see, e.g., Hassin, 1985, and more recently, Tornøe and Østerdal, 2017, as well

as references therein). Under the LIFO protocol, waiting is disciplined as it entails a transition

to a bad position in the queue and, consequently, may improve on the welfare generated by

the FIFO protocol. It is important to keep in mind, however, that protocols such as LIFO

face well-known implementation hurdles.30

Formally, we study a discretionary setting that has the same structure described in Section

4.1 but, once every agent on the market has specified their demands, matches form according

to a LIFO protocol. This protocol assigns a linear order � over, say, H t such that ∀xt′ , xt′′ ∈
H t, xt

′′ � xt
′ ⇐⇒ t′ < t′′ ≤ t. We first consider the decisions of H-squares (and omit

the analogous discussion for h-rounds). If an H-square finds an h-round upon arrival, the H-

square matches with the last arrived h-round. If no h-round is available, the H-square needs

to decide whether to match with the last l-round, who must have just arrived together with

the H-square, or to wait in the queue. Under LIFO, this decision is independent of other H-

squares who have been waiting in the queue. Rather, the decision depends on the anticipated

behavior of H-squares who will arrive at the market in future periods. We consider a SD-

strategy ψH for H-squares relying on a threshold k̄H . If no h-round is available, an H-square,

say player i, waits by demanding an h-round as long as her rank qi according to LIFO is at

most k̄H . To gain intuition for our equilibrium characterization, suppose that all H-squares,

30In particular, they are subject to manipulation as they introduce incentives to leave and re-enter queues
(see Margaria, 2017). They are also considered “unfair” in that individuals who exert no cost of waiting are
catered to first, while identical others who have been waiting remain in the queue.
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including player i, use the threshold k̄H = 1. If player i finds no available h-round upon

arrival, then she waits by demanding an h-round. In the next period, player i continues to

wait if either a pair (H, h) or a pair (L, l) arrive, since in these scenarios her rank according to

LIFO remains the same. However, if an (H, l) pair arrives, the new H-square, who also uses

k̄H = 1, demands an h-round. According to ψH , player i then demands an l-round and leaves

the market. Finally, if an (L, h) pair arrives, player i matches to the h-round. To summarize,

player i exits the market matched with either an h-round or an l-round, with probability 1/2

each, as soon as the first incongruent pair arrives. Since the expected number of periods until

the first arrival of an incongruent pair is 1
2p(1−p) , the expected payoff for player i is

UH(h) + UH(l)

2
− c

2p(1− p) .

Consider a possible deviation of player i in which i demands an l-round when she finds no

available h-rounds upon her arrival. This deviation is not strictly profitable if and only if

UH(l) ≤ UH(h) + UH(l)

2
− c

2p(1− p) ,

which we can rewrite as

p(1− p) (UH(h)− UH(l))

c
≥ 1 =

k̄H(k̄H + 1)

2
. (5)

Consider another potential deviation by player i: if one moreH-square arrives after player i

and no h-round is available, player i, instead of demanding an l-round, increases her threshold

to k̄′H = 2 indefinitely and remains in the market. If player i uses the threshold k̄′H = 2,

while all other H-squares use k̄H = 1, player i will match to an h-round for sure. We use an

absorbing Markov chain to compute the expected continuation payoff for player i. In what

follows, we normalize time to event time, denoted by τ , which increases upon each arrival of

an incongruent pair (which, in expectation, occurs every 1/2p(1−p) periods). The state space
is {1, 2, h}: the two transient states (1 and 2) denote the H-square’s rank, and the absorbing

state (h) denotes player i matching an h-round. The matrix of transition probabilities pij

from state i to state j is

P =

[
Q R
0 1

]
, where Q =

[
0 1/2

1/2 1/2

]
and R =

[
1/2
0

]
.

The matrix Q represents transition probabilities between transient states.31 Let

T ≡ (I2 −Q)−1 · 1 = 4

[
1/2 1/2
1/2 1

] [
1
1

]
=

[
4
6

]
,

31Take any event time τ , and suppose that the state at time τ is 2: i.e., there is an another H-square
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where I2 is the 2 × 2 identity matrix. If the initial state of the absorbing Markov chain is 2,

it is well-known in the absorbing Markov chain literature (see, e.g., Kemeny and Snell, 1960)

that the chain will be absorbed by state h within T2 = 6 expected periods of event time.

Therefore, if player i deviates by increasing her threshold perpetually to k̄′H = 2, the expected

continuation payoff is UH(h)− 6c
2p(1−p) . Such deviation is not strictly profitable if

UH(l) ≥ UH(h)− 6c

2p(1− p) ,

which is equivalent to

p(1− p) (UH(h)− UH(l))

c
≤ 3 =

(k̄H + 1)(k̄H + 2)

2
. (6)

A generalization of (5) and (6) under an arbitrary threshold k̄H ∈ Z+ yields:

Lemma 3 (Thresholds under LIFO) In all stationary∗ equilibria under LIFO in which

H-squares and h-rounds use threshold strategies, in all periods, −k̄lifo ≤ kHh ≤ k̄lifo,

where32

k̄lifo ≡
⌊√

2p(1− p)(UH(h)− UH(l))

c
+

1

4
− 1

2

⌋
.

We now turn to the decisions of l-rounds (or, analogously, those of L-squares). An l-round

matches with an H-square only when that H-square arrives with an l-round. LIFO then

prescribes the H-square to be matched with the last l-round to enter the market. It follows

that, if an l-round remains unmatched in the period of his arrival, he will never be matched

with an H-square later. Therefore, l-rounds are incentivized to depart as soon as possible:

Lemma 4 (Equilibrium under LIFO) There exists a stationary∗ equilibrium in which H-

squares and h-rounds use a threshold k̄lifo and such that there can never be both L-

squares and l-rounds waiting in the market. This equilibrium is welfare-maximizing

among all stationary∗ equilibria.

waiting, who arrived after player i. The event time τ progresses to τ + 1 by an arrival of an incongruent pair.
If the incongruent pair is (L, h), the rank of player i moves up to 1. This transition occurs with probability
Q21 = 1/2. Otherwise, the new incongruent pair is (H, l). According to ψH , the H-square who has been
waiting with player i demands a l-round and leaves the market, leaving player i’s rank at 2. This transition
occurs with probability Q22 = 1/2. If the state in period τ is 1, and (L, h) arrives, then player i matches to
the h-round. This last transition occurs with probability R11 = 1/2.
32In the Appendix, we show that in all stationary∗ equilibria, the full support of the H-h queue is
{−k̄lifo, .., k̄lifo}. Therefore, the bounds described in Lemma 3 are achieved in equilibrium.
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Similar to Section 4, we can characterize the equilibrium steady state:

Proposition 5 (Discretionary Steady State under LIFO) The welfare-maximizing sta-

tionary∗ equilibrium under LIFO is associated with a unique steady state distribution

over queue lengths, such that the length of the H-h queue kHh = kH − kh is uniformly
distributed over {−k̄lifo, . . . , k̄lifo} and, in any period, the queues contain only H-squares
and l-rounds or only h-rounds and L-squares.

We can now compare this threshold, as well as consequent welfare levels, to those emerging

from the other protocols discussed throughout the paper.

Corollary 5 (Thresholds and Welfare Comparisons under LIFO) 1. For suffi ciently

small waiting costs c, the maximal waiting queues under LIFO are longer than un-

der the optimal mechanism, but shorter than under FIFO: k̄opt < k̄lifo < k̄fifo.

2. The LIFO protocol is asymptotically effi cient– that is, the maximum equilibrium

welfare under LIFO is given by W lifo(c) = S∞ − Γ(c), where lim
c→0

Γ(c) = 0.

Corollary 5 suggests that the LIFO protocol could represent a substantial improvement

with respect to the FIFO protocol in discretionary settings, at least for small costs. Figure 3

depicts the welfare losses generated by both the FIFO and the LIFO protocols with respect

to the optimal mechanism for the parameter values used in Figure 2: UH(h) = Uh(H) = 3,

UH(l) = Uh(L) = UL(h) = Ul(H) = 1, UL(l) = Ul(L) = 0, and p = 0.3. The figure illustrates

that the welfare gap decreases significantly under LIFO, even for costs far away from zero.

7 Asymmetric Markets

Throughout, we assumed a symmetric environment in terms of waiting costs and type distri-

butions. In this section, we consider a market with asymmetric type distributions, utilities,

and waiting costs. Specifically, we assume the probability that a square is an H-square is pH ,

while the probability that a round is an h-round is ph such that, without loss of generality,

pH ≥ ph. Furthermore, we allow for waiting costs to differ across market sides: we denote

by cS and cR the per-period cost experienced by squares and rounds, respectively. We place

no restrictions on match utilities other than that they are assortative and super-modular. In

this environment, we summarize the characterization of the optimal mechanism and analyze
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Figure 3: Welfare Gaps between Optimal and Discretionary Matching (FIFO and LIFO) as a
Function of Costs

a simpler one-threshold mechanism that approximates it with small waiting costs. Finally, we

illustrate that the comparison between centralized and discretionary processes studied above

carries through qualitatively in this more general environment.

7.1 Optimal Dynamic Mechanism

As seen in Section 3, when pH = ph, asymmetries in utilities play no role in the characterization

of the optimal mechanism, whose welfare depends on joint match surpluses Uxy = Ux(y) +

Uy(x), for x = H,L and y = h, l. Similarly, the optimal mechanism accounts for waiting

costs incurred by pairs, cS + cR. An optimal mechanism can then be derived from an optimal

mechanism when waiting costs for squares and rounds coincide and are equal to c ≡ cS+cR
2
.

Our focus here is, therefore, on the impact of asymmetries in type distributions on our results,

the case in which pH > ph. As in the symmetric market, (H, h) and (L, l) pairs are matched

immediately when available, and we focus on dynamic mechanisms that are identified by a pair

of thresholds (k̄H , k̄h). These thresholds do not necessarily coincide when type distributions

differ for squares and rounds. Intuitively, since H-squares are more prevalent than h-rounds,

it is more valuable for the mechanism designer to hold on to (L, h) pairs in the hopes of

H-squares appearing in the market than it is to hold on to (H, l) pairs. As in Section 3, given

a pair of thresholds (k̄H , k̄h), we find the resulting net expected time-average welfare at the

steady state. We look for the pair (k̄optH , k̄opth ) that maximizes this objective.
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Recall that stHh denotes the value of the (signed) length of the H-h queue at the beginning

of time t. xt ∈ {0, 1}k̄H+kh+1 is the timed vector such that xti takes the value of 1 if the state

is stHh and 0 otherwise. Then,

xt+1 = Tk̄H ,k̄hx
t,

where

Tk̄H ,k̄h=



1− (1− pH)ph pH(1− ph) . . . 0 0
(1− pH)ph pHph+(1− pH)(1− ph) . . . 0 0

0 (1− pH)ph . . . 0 0
...

...
. . .

...
...

0 0 . . . pH(1− ph) 0
0 0 . . . pHph+(1− pH)(1− ph) pH(1− ph)
0 0 . . . (1− pH)ph 1− pH(1− ph)

 .

Since the above Markov chain is ergodic, the corresponding matching process reaches a

unique steady state with a distribution πππ ≡ (πk̄H , πk̄H−1, . . . , π−k̄h) that we now identify.

Denote

η ≡ pH(1− ph) + (1− pH)ph and φ ≡ (1− pH)ph
pH(1− ph)

(< 1).

Rewriting Tk̄H ,k̄h in terms of η and φ, we obtain:

πk̄H =

(
1− η +

η

φ+ 1

)
πk̄H +

η

φ+ 1
πk̄H−1 =⇒ πk̄H−1 = φπk̄H ,

πk̄H−1 =
ηφ

φ+ 1
πk̄H + (1− η)πk̄H−1 +

η

φ+ 1
πk̄H−2 =⇒ πk̄H−2 = φπk̄H−1 = φ2πk̄H ,

...

π−k̄Hh
=

ηφ

φ+ 1
π−k̄h+1 +

(
1− η +

ηφ

φ+ 1

)
πk̄H +

η

φ+ 1
πk̄H−1 =⇒ π−k̄h = φk̄H+k̄hπk̄H .

Since
∑k̄H+k̄h

k=0 φkπk̄H = 1, it follows that πk̄H = 1−φ
1−φk̄H+k̄h+1 . Therefore,

πk̄H−k =
(1− φ)φk

1− φk̄H+k̄h+1
for every k = 0, 1, . . . , k̄H + k̄h.

The expected time-average match surplus at the steady state is then:

S(k̄H , k̄h) = pHphUHh + (1− pH)(1− ph)ULl

+ 1{kH > 0}

 k̄H∑
k=1

φk̄H−kπk̄H (1− pH)ph(UHh + ULl)


+ 1{kh > 0}

 k̄h∑
k=1

φk̄H+kπk̄HpH(1− ph)(UHh + ULl)


+ πk̄HpH(1− ph)UHl + φk̄H+k̄hπk̄H (1− pH)phULh.
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The expected time-average waiting costs at the steady state are:

C(k̄H , k̄h) = 2cπk̄H

 k̄H∑
k=0

kφk̄H−k +

k̄h∑
k=0

kφk̄H+k

 .

The optimal dynamic mechanism is identified by the pair of thresholds (k̄optH , k̄opth ) that maxi-

mize the expected time-average welfare, S(k̄H , k̄h)− C(k̄H , k̄h).

7.2 One-Threshold Mechanisms

WhenH-squares are strictly more likely to arrive than h-rounds (pH > ph), there is a relatively

small chance that many h-rounds arrive at the market and are not matched with H-squares.

In other words, the (signed) length of the H-h queue is unlikely to reach very negative values.

Therefore, we can consider a simpler mechanism, which only limits the length of the queue of

H-squares. It turns out that the most effi cient one-threshold mechanism, despite being less

effi cient than the optimal mechanism, is asymptotically effi cient as waiting costs, cS and cR,

vanish. We find the expected total welfare for one period of time of the two-threshold dynamic

mechanism (k̄H , k̄h) as k̄h becomes infinitely large.33 In the limit, πk̄H−k = (1−φ)φk for every

k = 0, 1, 2, . . . By applying this limit steady-state distribution, we obtain the corresponding

limit match surplus, S(k̄H ,∞), and waiting costs, C(k̄H ,∞):

S(k̄H ,∞) = pHphUHh + (1− pH)(1− ph)ULl

+ 1{kH > 0}

k̄H−1∑
k=0

(1− φ)φk(1− pH)ph(UHh + ULl)


+

( ∞∑
k=1

(1− φ)φk̄H+kpH(1− ph)(UHh + ULl)

)
+ (1− φ)pH(1− ph)UHl

and

C(k̄H ,∞) = 2c(1− φ)

 k̄H∑
k=0

kφk̄H−k +
∞∑
k=0

kφk̄H+k

 .

33Technically, a one-threshold mechanism defines a Markov chain with a countable state space
{. . . ,−1, 0, 1, . . . , k̄H}. However, when transitions toward state k̄H occur with probability strictly higher
than that of transitions away from state k̄H (i.e., pH(1 − ph) > ph(1 − pH)), the steady-state probabilities
for the truncated Markov chain defined by a two-threshold mechanism (k̄H , k̄h) approach the steady-state
probabilities for the untruncated Markov chain as k̄h increases.
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We can simplify the above expressions to achieve, for every k̄H = 0, 1, 2, . . . ,

S(k̄H ,∞) = phUHh + (1− pH)ULl + (pH − ph)UHl = S∞, and

C(k̄H ,∞) = 2c(1− φ)φk̄H

 φ

(1− φ)2
+

k̄H∑
k=0

kφ−k

 .

The expected time-average welfare isW (k̄H) ≡ S(k̄H ,∞)−C(k̄H ,∞).We inspect the mar-

ginal time-average welfare with respect to the length of the queue of H-squares ∆+W (k̄H) ≡
W (k̄H + 1)−W (k̄H) and find the most effi cient one-threshold k̄∗∗H from

∆+W (k̄∗∗H ) ≤ 0 ≤ ∆+W (k̄∗∗H − 1). (7)

Now, to derive a closed-form solution for k̄∗∗H , notice that the expected total surplus

S(k̄H ,∞) is a constant function of k̄H . Therefore,

∆+W (k̄H) = C(k̄H ,∞)− C(k̄H + 1,∞)

= 2c(1− φ)
(
φk̄H − φk̄H+1

) φ

(1− φ)2
+

k̄H∑
k=0

kφ−k


+2c(1− φ)φk̄H+1

 k̄H∑
k=0

kφ−k −
k̄H+1∑
k=0

kφ−k

 = 2c(2φk̄H+1 − 1).

The most effi cient one-threshold mechanism is identified from (7) as:

k̄∗∗H =

⌊
− log 2

log φ

⌋
=

⌊
− log 2

log(1− pH) + log ph − log pH − log(1− ph)

⌋
.

The most effi cient one-threshold mechanism k̄∗∗H does not depend on c. Importantly, every

fixed one-threshold mechanism is asymptotically effi cient with vanishingly small waiting costs.

Intuitively, in the one-threshold mechanism, an incongruent pair leaves the market only when

the state is kHh = k̄H , which always occurs with probability 1 − φ at the steady state.

Therefore, all one-threshold mechanisms result in the same expected fraction of incongruent

pairs matched in the steady state. In fact, the expected total time-average match surplus is

S∞ regardless of the threshold k̄H . For any fixed threshold k̄H , as waiting costs vanish, the

expected total time-average waiting costs approach zero and effi ciency is achieved.

7.3 Discretionary Matching

We focus on regular environments in which ph(UH(h)−UH(l)) 6= kcS and pH(Uh(H)−Uh(L)) 6=
kcR for every k ∈ Z+. The decisions of an H-square (analogously, an h-round) remain as

33



described in Section 4. Namely, when an H-square arrives at the market and an h-round is

available, an (H, h) pair is formed immediately. If an h-round is not available, the arriving

H-square decides to wait in the queue based on the number of H-squares already in the queue.

Since an h-round is not available, this implies that the H-square arrived with an l-round. As

all l-rounds are willing to match with H-squares, the newly arrived H-square will wait if and

only if the gain UH(h) − UH(l) exceeds the expected waiting costs till matching with an h-

round. In analogy with Lemma 1, the (signed) length of the H-h queue at the beginning of a

period, kHh ≡ kH − kh, will then be bounded as −k̄fifoh ≤ kHh ≤ k̄fifoH , where

k̄fifoH ≡ max

{
k ∈ Z+ |

kcS
ph

< UH(h)− UH(l)

}
, and

k̄fifoh ≡ max

{
k ∈ Z+ |

kcR
pH

< Uh(H)− Uh(L)

}
.

An l-round (similarly, an L-square) may decide to wait to match with an H-square if

the queue of H-squares is long and expected to hit the threshold k̄fifoH within a suffi ciently

short time. In contrast with the symmetric case, L-squares and l-rounds may now wait

simultaneously in equilibrium. Intuitively, consider an environment in which both types of

rounds are nearly indifferent between matching with H-squares or L-squares and therefore

match with whomever is available immediately. In such an environment, an L-square, who

is first in line, may decide to wait, even when arriving with an l-round, in the hopes of

an (L, h) pair arriving in the next period. In other words, in general asymmetric markets,

Lemma 2 does not hold. A full characterization of the equilibrium requires the analysis of a

rather complex random process of the 3-dimensional vector (kHh, kL, kl). In order to achieve

bounds on equilibrium welfare, we study a one-dimensional Markov process of kHh only, with

a transition matrix as described in Section 7.1. In equilibrium, as well as under the one-

dimensional protocol discussed above, the expected time-average surplus is bounded above by

S∞ = phUHh + (1 − pH)ULl + (pH − ph)UHl. In the one-dimensional process with thresholds
k̄fifoh and k̄fifoH , at each state kHh, either kHh H-squares (and at least as many l-rounds) or

|kHh| h-rounds (and at least as many L-squares) incur waiting costs. Since in equilibrium there
might be additional waiting costs incurred through the simultaneous waiting of L-squares or

l-rounds, the resulting per-period welfare W fifo(cS, cR) can be bounded as follows:

W fifo(cS, cR) ≤ S∞ − (cS + cR)πk̄fifoH

k̄fifoH∑
k=0

kφk̄
fifo
H −k +

k̄fifoh∑
k=0

kφk̄
fifo
H +k

 .
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After some algebraic manipulation, we can show that

lim
(cS ,cR)→(0,0)

W fifo(cS, cR) ≤ S∞ − ph(UH(h)− UH(l)).

This echoes Corollary 3 in the main text of the paper. The bound on the welfare wedge

between the discretionary protocol and the optimal mechanism exhibits similar comparative

statics to those described in the paper, increasing in ph and in UH(h)− UH(l).

8 Appendix

8.1 Proofs Regarding the Optimal Mechanism

We start with a preliminary lemma.34

Lemma A1 (1) For any mechanism µ, there exists a mechanism µ′, with v(µ′) ≥ v(µ),

which never holds H-squares and h-rounds that are both available, or L-squares and

l-rounds that are both available; (2) For any mechanism µ, there exists a mechanism µ′,

with v(µ′) ≥ v(µ), which never holds more than U
2c
squares (and rounds) in the market.

Due to Lemma A1, the planner essentially solves the following Markov decision problem

with agents arriving in incongruent pairs, a finite set of states, and a finite set of actions:

(MDP, s0) ≡ {T, S, s0, (r(s, k), p(·|k))s∈S,k∈Hs},

where s0 denotes a particular initial state. Each component is defined as follows:

1. T ≡ {0, 1, 2, . . . } is the set of decision event times. As described in the body of the paper,
event times correspond to times at which incongruent pairs (H, l) or (L, h) arrive. Since

the probability of an incongruent pair arriving at any period is 2p(1− p), the expected
time between event times is 1

2p(1−p) .

2. S ≡ {z ∈ Z : −(U/2c) − 1 ≤ z ≤ (U/2c) + 1} is the set of possible states (or stocks).
Each state sHh ≡ sH − sh ∈ S represents the (signed) number of incongruent pairs of
type (H, l) or (L, h) in the market. Since we restrict our attention to mechanisms that

do not hold more than U/2c squares (and rounds), a state, which takes a new arriving

pair into account, has to belong to the set {− bU/2cc − 1, ..., bU/2cc+ 1}.
34A formal proof of Lemma A1 is available at the following link:
http://www.leeatyariv.com/papers/DynamicMatchingAppendix.pdf

35



3. s0 = 0 is the the initial state. Initially, no agent waits.

4. K ≡ {z ∈ Z : −U/2c ≤ z ≤ U/2c} is the set of available actions. Each k ∈ K represents

the (signed) number of incongruent pairs held in the market from one period to the next.

5. r(s, k) is the reward function: for every s ∈ S, k ∈ K,

r(s, k) =


(s− k)UHl − kc

2p(1−p) if s ≥ k ≥ 0

(|s| − |k|)ULh − |k|c
2p(1−p) if s ≤ k ≤ 0

−∞ otherwise.

The expected waiting cost incurred by any agent who waits for one event time is c
2p(1−p) .

The reward function returns −∞ if an action is infeasible. For all feasible actions, the

values of the reward function are in the interval
[
− U

4p(1−p) , (
U
2c

+ 1)UHh

]
.

6. p(s, k) is the transition probability, the probability the system is in state s ∈ S at any
time τ + 1, after the action k has been chosen at time τ .

p(s, k) =

{
1/2 for s = k − 1, k + 1,
0 otherwise.

(MDP, s0) is stationary in the sense that the reward function r(s, k) and the transition

probability function p(s, k) do not depend on time, or event times, explicitly. A policy of

(MDP, s0) is any rule, deterministic or randomized, governing the choice of actions. Such a

rule may, in principle, be history-dependent. The value of a policy µ is then,

v(µ) ≡ lim inf
T→∞

1

T
Eµ

[
T∑
τ=1

r(sτ , kτ )

]
.

A stationary and deterministic policy, which we call a SD-policy, of (MDP, s0) applies the

same deterministic decision rule µSD : S → K regardless of the history. The value of µSD is

then

v(µSD) = lim
N→∞

1

N
E

[
T∑
τ=1

r(sτ , µSD(sτ ))

]
.

The limit exists, as guaranteed, for example, by Proposition 8.1.1(b) in Puterman (2005).

The finite state space implies the existence of an optimal SD-policy (see Theorem 7.1.9 of

Puterman (2005) or Theorem Puterman 3 below). As such, we can focus on SD-mechanisms

satisfying Assumptions 1 and 2 in Section 2 without loss of generality.

Proof of Proposition 1: The proof follows several steps.
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Step 1 (Existence of Thresholds (k̄H , k̄h))

Any stationary and deterministic policy d of (MDP ) is associated with two thresholds,

representing the largest number of (H, l) and (L, h) pairs held in the market at any time,

respectively.35 Define

k̄H ≡ min{s | s > 0, d(s) < s} − 1, and

k̄h ≡ min{|s| | s < 0, d(s) > s}+ 1.

The thresholds (k̄H , k̄h) are well-defined. Indeed, policies maintain only a bounded number of

unmatched pairs in the market. We claim that the value of a policy is uniquely determined

by the thresholds and decisions at the thresholds. Given policy d, define

d′(s) ≡


d(s) if −k̄h ≤ s ≤ k̄H
d(k̄H) if s > k̄H
d(−k̄h) if s < −k̄h.

TheMarkov processes induced by d and d′, namely {(sτ , r(sτ , d(sτ ))}∞τ=0 and {(sτ , r(sτ , d′(sτ )))}∞τ=0,

are identical. Thus, v(d) = v(d′). We can therefore characterize any policy d by its corre-

sponding thresholds (k̄H , k̄h) and decisions at the thresholds (d(k̄H), d(k̄h)).36

Step 2 (Stationary Distribution of kHh)

We characterize the unique stationary distribution of kHh corresponding to the ergodic

Markov process induced by a policy d.

Claim 1 Take k̄H , k̄h ∈ [1, U
2c

] ∩ Z+, and zH , zh ∈ Z+ with zH ≤ k̄H and zh ≤ k̄h. A policy d

of (MDP ) defined by

d(s) ≡


s if −k̄h ≤ s ≤ k̄H
k̄H − zH if s > k̄H
−k̄h + zh if s < −k̄h.

induces a Markov chain corresponding to kHh. The unique steady state distribution

π = (π−k̄h , . . . , πk̄H ) is such that:

1. (Middle Range) for −k̄h + zh ≤ k ≤ k̄H − zH , πk = π0 = 1
k̄H+k̄h−zH/2−zh/2+1

,

35Indeed, suppose a policy dictates matches to be formed when the number of, say, (H, l) pairs exceeds k1H
or k2H > k1H . The number of (H, l) pairs would then never surpass k2H , so the relevant threshold for outcomes
would be the minimal threshold k1H .
36There is multiplicity regarding prescriptions for states that are never reached. With thresholds k̄H and k̄h

the market never has more than k̄H + 1 H-squares or more than k̄h + 1 h-rounds. The specification of what
happens outside of these regions therefore has no impact on outcomes.
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2. (Upper Range) for z = 1, . . . , zH , πk̄H−zH+z = π0

(
1− z

zH+1

)
,

3. (Lower Range) for z = 1, . . . , zh, π−k̄h+zh−z = π0

(
1− z

zh+1

)
.

That is, the stationary distribution is uniform in the middle range. The stationary prob-

ability mass decreases as kHh approaches k̄H or k̄h.

Proof of Claim 1: Denote by

xτ ≡ (xτ−k̄h , x
τ
−k̄h+1, . . . , x

τ
k̄H−1, x

τ
k̄H

)tr ∈ {0, 1}k̄H+k̄h+1

the timed vector such that xτi = 1(kHh = i). Then, xτ+1 = Tdx
τ , where

Td =



0 1/2 . . . 0 0
1/2 0 . . . 0 0
0 1/2 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1/2 0
0 0 . . . 0 1/2
0 0 . . . 1/2 0


+



0 0 . . . 0 0
...

... . . .
...

...
1/2 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 1/2
...

... . . .
...

...
0 0 . . . 0 0


.

The second matrix on the right hand side has two non-zero elements valued at 1/2. Each

represents two scenarios, a transition from k̄H upon the arrival of an (H, l) pair to k̄H − zH ,
and a transition from−k̄h upon the arrival of a (L, h) pair to−k̄h+zh. The first matrix includes

all other transitions. The Markov chain is ergodic, and the unique stationary distribution of

kHh exists. Then, π in Claim 1 is the unique stationary distribution using straightforward

calculations.

Step 3 (Welfare)

We compute the average welfare (i.e., total welfare per period) for any stationary and

deterministic mechanism µ. Let d be the associated policy of (MDP ) with thresholds (k̄H , k̄h)

and the decisions at the thresholds identified by (zH , zh).37

First, we compute the average total surplus generated in one time period. A newly arrived

pair is of type (H, h) with probability p2, in which case the optimal mechanism generates a

surplus equal to UHh. Similarly, a newly arrived pair is of type (L, l) with probability (1−p)2,

in which case the optimal mechanism generates a surplus equal to ULl.

Suppose an (H, l) pair arrives at time t when the stock is kt−1
Hh . If k

t−1
Hh < 0, the mechanism

creates one (H, h) and one (L, l) pair, generating a surplus equal to UHh + ULl. If 0 ≤ kt−1
Hh <

37That is, for s > k̄H , d(s) = k̄H − zH and for s < −k̄h, d(s) = −k̄h + zh.
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k̄H , the mechanism creates no matches (and no additional surplus), and if kt−1
Hh = k̄H , the

mechanism creates (zH +1) matches of (H, l) pairs. Analogous conclusions pertain to the case

in which a (L, h) pair arrives. The expected match surplus per period is therefore:

p2UHh + (1− p)2ULl + (1− π0)p(1− p)(UHh + ULl)

+πk̄Hp(1− p)(zH + 1)UHl + πk̄hp(1− p)(zh + 1)ULh

= pUHh + (1− p)ULl − π0p(1− p)U.

Next, we compute the average total waiting costs incurred by agents waiting in line for one

period. During the transition from time t culminating at stock kHh to time t+1, 2|kHh| agents
wait in line so the total costs of waiting incurred during this one time period are 2|kHh|c. Thus,
a mechanism with thresholds (k̄H , k̄h) results in expected total costs of waiting equal to

k̄H∑
k=1

2cπk|k|+
−k̄h∑
k=−1

2cπk|k|

The first term equals to

(2cπ0)

k̄H−zH∑
k=1

k + (2cπ0)

zH∑
z=1

(
1− 1

zH + 1

)
(k̄H − zH + z)

= (cπ0)

(
(k̄H − zH)(k̄H + 1) +

zH(zH + 2)

3

)
.

The second term is computed similarly. The average welfare of the mechanism µ is then

W (k̄H , k̄h, zH , zh) = pUHh + (1− p)ULl − π0p(1− p)U

−(cπ0)

(
(k̄H − zH)(k̄H + 1) + (k̄h − zh)(k̄h + 1) +

zH(zH + 2) + zh(zh + 2)

3

)
, (8)

where π0 = 2
2k̄H+2k̄h−zH−zh+2

.

Step 4 (Matching at Most One Pair at a Time)

We now show that we can focus on mechanisms satisfying zH = zh = 0. In fact, generically

this restriction is necessary for a mechanism to be optimal. The proof follows from the

following claim, which completes the proof of Proposition 1.

Claim 2 Fix any k̄h and zh(≤ k̄h). For any k̄H ≥ 1 and 0 ≤ zH ≤ k̄H − 1,

W (k̄H , k̄h, zH + 1, zh) ≥ W (k̄H , k̄h, zH , zh)

implies

W (k̄H − 1, k̄h, zH , zh) ≥ W (k̄H , k̄h, zH + 1, zh).
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That is, whenever a mechanism with a larger zH leads to a higher average welfare, we can

find a mechanism with an even higher average welfare by decreasing the threshold k̄H , while

adhering to a smaller zH .

Proof of Claim 2: Let

φ = 2k̄H + 2k̄h − zH − zh + 1 and

ψ = (k̄H − zH)(k̄H + 1) + (k̄h − zh)(k̄h + 1) +
zH(zH + 2) + zh(zh + 2)

3
.

The first inequality in Claim 2 holds if and only if

p(1− p)U
φ

+
c

φ

(
ψ − k̄H +

2zH
3

)
≤ p(1− p)U

φ+ 1
+

c

φ+ 1
ψ,

or equivalently

p(1− p)U + cψ − (φ+ 1)c

(
k̄H −

2zH
3

)
≤ 0. (9)

The second inequality in Claim 2 holds if and only if

p(1− p)U
φ− 1

+
c

φ− 1

(
ψ − 2k̄H + zH

)
≤ p(1− p)U

φ
+
c

φ

(
ψ − k̄H +

2zH
3

)
,

or equivalently

p(1− p)U + cψ − c
(
k̄H −

2zH
3

)
− φc

(
k̄H −

zH
3

)
≤ 0. (10)

Clearly, (9) implies (10).

Claim 2 completes the proof of Proposition 1. Furthermore, this claim illustrates that

there is always an optimal mechanism identified by zH = zh = 0. From the proof, notice that

if zH > 0, inequality (9) implies that inequality (10) holds with a strict inequality. Therefore,

in any optimal mechanism, zH , zh < 2. In fact, multiplicity can emerge only when there is

multiplicity in the thresholds k̄H , k̄h fixing zH = zh = 0. Indeed, suppose there is an optimal

mechanism with k̄H and zH = 1 and some k̄h, zh. From the proof of Claim 2, it follows that

W (k̄H , k̄h, 1, zh)−W (k̄H , k̄h, 0, zh) = W (k̄H − 1, k̄h, 0, zh)−W (k̄H , k̄h, 1, zh).

The optimality of k̄H and zH = 1 implies that, in the above equality, both sides equal to

0 (otherwise, the mechanism identified by k̄H − 1 and zH = 0, with k̄h, zh, would generate

greater welfare). In particular, there are optimal mechanisms identified by both k̄H − 1 and

zH = 0 as well as k̄H and zH = 0. �

40



Proof of Proposition 2: We find an optimal threshold pair (k̄H , k̄h), assuming that zH =

zh = 0. To prove Proposition 2, we write the average welfare as

pUHh + (1− p)ULl −
p(1− p)U
k̄H + k̄h + 1

− (k̄H(k̄H + 1) + k̄h(k̄h + 1))c

k̄H + k̄h + 1
.

We use the following change of variables

φ ≡ k̄H + k̄h, and ψ ≡ k̄H − k̄h,

and rewrite the above expression for welfare as

pUHh + (1− p)ULl −
p(1− p)U
φ+ 1

− (φ2 + 2φ+ ψ2)c

2(φ+ 1)
.

The welfare is maximized when ψ = 0 (i.e., k̄H = k̄h = φ
2
) if φ is even, or |ψ| = 1 if φ is odd.

We take into account this necessary condition of an optimal threshold pair and rewrite the

welfare as

W (φ) =

{
pUHh + (1− p)ULl − p(1−p)U

φ+1
− (φ+1)c

2
if φ is odd

pUHh + (1− p)ULl − p(1−p)U
φ+1

− (φ+1)c
2

+ c
2(φ+1)

if φ is even.

Define the marginal increase of welfare when increasing the threshold by one as∆+W (φ) ≡
W (φ+ 1)−W (φ). If φ ∈ Z+ is odd,

∆+W (φ) =
p(1− p)U

(φ+ 1)(φ+ 2)
− c

2

(
φ+ 1

φ+ 2

)
.

If φ ∈ Z+ is even,

∆+W (φ) =
p(1− p)U

(φ+ 1)(φ+ 2)
− c

2

(
φ+ 2

φ+ 1

)
.

For non-trivial (i.e., non-zero) optimal thresholds, it is necessary that ∆+W (0) > 0, or

equivalently c < p(1−p)U
2

. Suppose c is small enough that this is the case. A necessary condition

for an optimal sum of thresholds φ∗(≥ 1) is ∆+W (φ∗) ≤ 0 ≤ ∆+W (φ∗−1). Thus, a necessary

condition for an odd φ∗ is

p(1− p)U
(φ∗ + 1)(φ∗ + 2)

− c

2

(
φ∗ + 1

φ∗ + 2

)
≤ 0 ≤ p(1− p)U

φ∗(φ∗ + 1)
− c

2

(
φ∗ + 1

φ∗

)
,

which is equivalent to

φ∗ =

√
2p(1− p)U

c
− 1.
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Similarly, a necessary condition for an even φ∗ is

p(1− p)U
(φ∗ + 1)(φ∗ + 2)

− c

2

(
φ∗ + 2

φ∗ + 1

)
≤ 0 ≤ p(1− p)U

φ∗(φ∗ + 1)
− c

2

(
φ∗

φ∗ + 1

)
,

which is equivalent to √
2p(1− p)U

c
− 2 ≤ φ∗ ≤

√
2p(1− p)U

c
.

Therefore, an optimal thresholds sum φ∗ must be even unless
√

2p(1−p)U
c

is an even integer.

The generically unique optimal threshold is identified by

k̄optH = k̄opth =
φ∗

2
=

⌊√
p(1− p)U

2c

⌋
.

It is easy to verify that, when
√

p(1−p)U
2c

is an integer, any combination of thresholds (k̄optH , k̄opth )

such that k̄optH , k̄opth ∈
{√

p(1−p)U
2c

,
√

p(1−p)U
2c

− 1

}
identifies an optimal mechanism. Further-

more, multiplicity emerges only when
√

p(1−p)U
2c

is an integer. �

Proof of Corollary 1: Using the optimal thresholds from Proposition 2, we get that for

c ≤ p(1−p)U
2

,

f(c) ≡ p(1− p)U
2k̄opt + 1

=
p(1− p)U

2

⌊√
p(1−p)U

2c

⌋
+ 1

, and

g(c) ≡ 2k̄opt(k̄opt + 1)

2k̄opt + 1
c =


(⌊√

p(1− p)U
2c

⌋
+

1

2

)
− 1

4

⌊√
p(1−p)U

2c

⌋
+ 2

 c.
We can then define Θ(c) ≡ f(c)+g(c) to get the representation ofW opt(c) in the corollary.

Take any c < p(1−p)U
2

for which k̄opt /∈ Z+. There exists ε > 0 such that for every c′ with

|c′−c| < ε, k̄opt(c′) = k̄opt(c).38 Thus, Θ(c) is differentiable at c. Moreover, for any c < p(1−p)U
2

such that k̄opt ∈ Z+, Θ is semi-differentiable. Hence, Θ(c) is continuous. At any differentiable

point c (around which k̄opt(c) is constant),

dΘ(c)

dc
=
∂Θ(k̄opt(c), c)

∂c
=

2k̄opt(k̄opt + 1)

2k̄opt + 1
> 0.

38We slightly abuse our notation and make the dependence of k̄opt on the cost c explicit here.
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Furthermore, the concavity of Θ(c) follows from the fact that at any semi-differentiable but

not differentiable point c,
d−Θ(c)

dc
>
d+Θ(c)

dc
.

�

8.2 Proofs Regarding Discretionary Matching

8.2.1 Players’Markov Decision Problem

In this section we study stationary∗ equilibria under several priority protocols. A key first step

is to formalize each player’s dynamic decision problem, defined by other players’equilibrium

strategies, as a Markov decision problem (MDP ). We consider here an H-square’s problem

and omit the analogous descriptions for other player types. Fix any priority rule, and take

an H-square, say player i, who arrived in period t0 ≥ 1. Assume that all other players

follow a stationary∗ strategy profile Ψ−i.39 Player i solves an infinite-horizon dynamic decision

problem, defined by Ψ−i. For each period t ≥ t0, let θ
t
i = (st, qti) denote the player’s augmented

state, where st = (stH , s
t
L, s

t
h, s

t
l) denotes the state of the market, and q

t
i denotes player i’s rank

among the H-squares present. We write qti = 0 if player i is matched before period t. We

denote by Θi the set of player i’s possible augmented states. In each period t ≥ t0, player i

chooses a demand di ∈ {h, l}, where h represents a demand for an h-round, and l represents a
demand for any round. The stage-game payoff ui(di, θi,Ψ−i) is either a match surplus (UH(h)

or UH(l)), waiting cost −c, or 0 (if qi = 0). The initial augmented state is θt0i = (st0 , qt0i ) such

that qt0i = st0H under FIFO and q
t0
i = 1 under LIFO. The transition between augmented states

is straightforward from our description of the model, hence we omit it here.

A strategy σi is any rule prescribing demands submitted over time. It may entail random-

ization and it may be history-dependent. The payoff for player i from strategy σi is

Ui(σi; θi,Ψ−i) ≡ Eσi

[ ∞∑
t=t0

ui(di, θ
t
i,Ψ−i) : θt0i = θi

]
.40

We focus on player i’s Markov random strategies in the sense that a choice in each period

is independent of past history. This restriction is without loss of generality since

sup
σi∈Σi

Ui(σi; θi,Ψ−i) = sup
σi∈ΣMR

i

Ui(σi; θi,Ψ−i),

39That is, restricting attention to all players but i, the strategy profile is stationary∗ and in particular
symmetric.
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where Σi and ΣMR
i denote the set of all strategies and all Markov random strategies, respec-

tively (Proposition 7.1.1 of Puterman, 2005). The restriction to Markov random strategies

allows us to normalize player i’s arrival time as t0 = 0 and write

Ui(σi; θi,Ψ−i) = Eσi

[ ∞∑
t=0

ui(di, θ
t
i,Ψ−i) : θ0

i = θi

]
for each σi ∈ ΣMR

i .

We extend player i’s decision problem to a Markov decision problem (MDP ) with an

arbitrary initial state. That is, an initial state θ0
i can be any element in Θi ⊆ {(s, qi) ∈ Z5

+ :

sH + sL = sh + sl, 1 ≤ qi ≤ sH}.41 A policy µi of the (MDP ) is any Markovian random rule

for choosing demands. A stationary and deterministic policy (SD-policy, for short) applies

the same decision rule in every period. We denote a SD-policy by ψi : Θi → {h, l}. The value
of a policy µi, for each initial state θi, is defined by vi(µi; θi,Ψ−i) ≡ Ui(µi; θi,Ψ−i). Last, the

value of the (MDP), for each initial state θi, is v∗i (θi; Ψ−i) ≡ supµi vi(µi; θi,Ψ−i).

We characterize the value of the (MDP ), v∗i (·; Ψ−i) : Θi → R∪{−∞} and find an optimal
SD-policy, whose value is equal to v∗i (θi; Ψ−i) for every initial state θi. An optimal SD-policy

of the (MDP ) defines a best-response that is a stationary and deterministic strategy for player

i given any initial state. A stationary∗ strategy profile Ψ = (ψH , ψL, ψh, ψl) is a stationary
∗

equilibrium if, for every H-square (similarly for other types), ψH is an optimal SD-policy of

the (MDP ) defined by all other players’equilibrium strategies Ψ−i. We use the following

definition and theorems from Puterman (2005) that are associated with player i’s problem,

but hold for general Markov decision problems.

Definition 1. (Optimality Equation; Equation 6.2.2 with λ = 1, or Equation 7.1.8 of Puter-

man, 2005) We refer to the following system of equations as the optimality equation:

v(θi) = max
d∈{h,l}

ui(di, θi,Ψ−i) +
∑
θ′i∈Θi

p(θ′i|θi, di,Ψ−i)v(θ′i)

 , for all θi ∈ Θi.

Theorem Puterman 1 (Theorem 7.1.3 of Puterman, 2005) The value of the (MDP ),

v∗i (·; Ψ−i), is a solution of the optimality equation.

Theorem Puterman 2 (Theorem 7.2.5 (a) of Puterman, 2005) A policy µ∗i is opti-

mal if and only if the value of the policy v∗i (·;µ∗i ,Ψ−i) : Θi → R ∪ {−∞} is a solution
of the optimality equation.

41As mentioned, the initial condition θ0i = (s0, q0i ) should satisfy q0i = s0H under FIFO and q0i = 1 under
LIFO. We remove such restrictions in the (MDP ).
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Note that the value of the (MDP ) is not a unique solution of the optimality equation. For

example, we can add a constant to the value and find another solution. This non-uniqueness

is a consequence of there not being discounting in our model. Finally, the state space Θi for

player i can be finite under some stationary∗ strategy-profile Ψ−i chosen by other players. We

have

Theorem Puterman 3 (Theorem 7.1.9 of Puterman, 2005) If Θi is finite, then there

exists an optimal SD-policy.

8.2.2 Proofs Regarding Stationary∗ Equilibria under FIFO

The following Lemmas A2 and A3 are employed in the proofs of Lemmas 1 and 2.

Lemma A2 Under FIFO, if Ψ∗ = (ψ∗H , ψ
∗
L, ψ

∗
h, ψ

∗
l ) is a stationary

∗ equilibrium, then

ψ∗H(s, q) =


h or l if q ≤ sh,
h if 1 ≤ q − sh ≤ k̄fifo,
l otherwise,

(11)

where

k̄fifo ≡
⌊
p(UH(h)− UH(l))

c

⌋
=

⌊
p(Uh(H)− Uh(L))

c

⌋
.

An analogous claim holds for h-rounds.

Proof of Lemma A2: We show that if Ψ∗ is a stationary∗ equilibrium, for any augmented

state θi = (s, qi) for player i, who is an H-square, we have

ψ∗H(θi) =

{
h if 1 ≤ qi − sh ≤ k̄fifo

l if qi − sh > k̄fifo.
(12)

The proof is by induction. Take any stationary∗ strategy-profile Ψ = (ψH , ψL, ψh, ψl). First,

we characterize the equilibrium behavior of player i, an H-square, when she finds no available

h-round in a period, and is positioned in the queue so that she is to become first in line

if she stays for an additional period. Formally, i’s augmented state in period t0 satisfies

qt0i = st0h + 1. Indeed, in period t0, player i finds no available h-round (i.e., q
t0
i > st0h ) and,

if she is not matched, she becomes the first H-square in the queue (i.e., qt0i − st0h = 1).

In finding a dynamic best-response from period t0 onward, it is without loss of generality

to restrict attention to player i’s Markov random strategies. Once we restrict attention to

Markov random strategies, we can normalize t0 = 0. Player i solves the following problem:

v∗i (θi; Ψ−i) ≡ sup
σi∈ΣMR

i

Eσi

[ ∞∑
t=0

ui(di, θ
t
i,Ψ−i) : θ0

i = θi

]
.
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Since s0
l ≥ q0

i + s0
L − s0

h > 0, we know that at least one l-round is available in period

t0 = 0. Also, the first h-round to arrive at the market will be available to match with player

i, but it takes, in expectation, 1/p periods until such h-round arrives. Therefore, we have

v∗i (θi; Ψ−i) = max
{
UH(l), UH(h)− c

p

}
. Hence, if ψ∗H is part of a stationary

∗ equilibrium, it

must be that

ψ∗H(θi) =

{
h if qi − sh = 1 ≤ k̄fifo

l if qi − sh = 1 > k̄fifo.

That is, (12) holds for every θi = (s, qi) with qi − sh = 1.

Next, we complete the induction. Take any k ∈ Z++ and a stationary∗ strategy-profile Ψ

such that ψH satisfies (12) for every augmented state θ = (s, q) with q− sh ≤ k. Consider any

H-square, say player i, whose augmented state in period 0 (normalized, as above) satisfies

q0
i = s0

h+(k+1). Assume that every other H-square, say player j with q0
j ≤ s0

h+k < q0
i , plays

ψH . Given that each player’s rank in the queue only improves over time, the firstmin{k, k̄fifo}
arriving h-rounds in the future are not available for player i, but the next arriving h-round

will be. In expectation, it takes min{k,k̄fifo}+1
p

periods until an h-round becomes available for

player i. As such,

v∗i (θi; Ψ−i) = max

{
UH(l), UH(h)− (min{k, k̄fifo}+ 1)c

p

}
= max

{
UH(l), UH(h)− (k + 1)c

p

}
,

where the last equality follows from the definition of k̄fifo. Therefore, if ψH is part of a

stationary∗ equilibrium, ψH(θi) must satisfy (12) for any augmented state θi = (s, qi) with

qi − sh = k + 1. �

Lemma A3 There exists a stationary∗ equilibrium Ψ∗ = (ψ∗H , ψ
∗
L, ψ

∗
h, ψ

∗
l ) such that (a) ψ

∗
H

(and ψ∗h) satisfies (11) (with an analogous condition for h-rounds), and (b) ψ
∗
l (s, sl) = L

and ψ∗L(s, sL) = l, whenever sL > 0 and sl > 0.

Proof of Lemma A3: We start with the analysis of the H-squares’decisions. Take any

stationary∗ strategy-profile Ψ = (ψH , ψL, ψh, ψl) that satisfies conditions (a) and (b) in the

claim. We prove that ψH is a best-response for an H-square, say player i, regardless of her

initial augmented state. Let ΘH be the set of all possible augmented states for player i,
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conditional on Ψ−i. That is42,

ΘH ≡ {(s, q) ∈ Z5
+ : −k̄fifo − 1 ≤ sHh ≤ k̄fifo + 2, qi ≤ sH}.

We extend player i’s decision problem as a (MDP ) with an arbitrary initial state (ignoring

the fact that her initial state in the discretionary matching is qi = sH). That is, player i’s

(MDP ) is

v∗i (θi; Ψ−i) ≡ sup
µi∈ΣMR

i

vi(µi; θi,Ψ−i), for all θi ∈ ΘH ,

where

vi(θi;µi,Ψ−i) ≡ Ui(µi; θi,Ψ−i) ≡ Eµi

[ ∞∑
t=0

ui(di, θ
t
i,Ψ−i) : θ0

i = θi

]
.

If player i follows the SD-policy ψH that satisfies (11), then, for θi = (s, qi),

vi(θi;ψH ,Ψ−i) = E

[ ∞∑
t=0

ui(ψH(θti), θ
t
i,Ψ−i) : θ0

i = θi

]

=


UH(h) if qi ≤ sh
UH(h)− (qi−sh)c

p
if 1 ≤ qi − sh ≤ k̄fifo

UH(l) otherwise.

From the construction of ψH in the proof of Lemma A2, it is easy to verify that vi(·;ψH ,Ψ−i) :

ΘH → R ∪ {−∞} solves the optimality equation. Thus, by Theorem Puterman 2, ψH is an

optimal SD-policy of player i’s (MDP ). In particular, each H-square is best-responding by

playing ψH , regardless of her initial augmented state. Next, we consider l-rounds’decisions.

Let Θl denote the set of all possible augmented states that an l-round may experience:

Θl ≡ {(s, q) ∈ Z5
+ : sH + sL = sh + sl, q ≤ sl},

where q = 0 represents the augmented state after the player is matched. We take ψH and ψh
satisfying condition (a) in Lemma A3. We want to construct a SD-strategy ψl : Θl → {H,L}
(and ψL : ΘL → {h, l}, whose analogous construction we omit) such that Ψ = (ψH , ψL, ψh, ψl)

constitutes a stationary∗ equilibrium. The following assumption on ψl (and ψL) will be useful

for our construction:

42Recall that qti = 0 for any period t after player i matches. If qti = 0, player i’s stage-game payoff is uti = 0.
Moreover, sHh = k̄fifo + 2 can occur, if player i deviates from ψH . For example, player i may arrive at the
market with a rank qi = sHh = k̄fifo + 1. If she deviates from ψH by demanding h, then sHh can be k̄

fifo + 2
in the following period due to an additional arrival of an H-square.
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Assumption A1 For any (s, sl) ∈ Θl, (s, sL) ∈ ΘL with sl > 0 and sL > 0, (1) ψl(s, sl) =

ψl(s, sl − 1) = ... = ψl(s, 1 + s+
Hh) = L; (2) ψL(s, sL) = ψL(s, sL − 1) = ... = ψL(s, 1 +

s−Hh) = l, where s+
Hh = max{sHh, 0} and s−Hh = −min{sHh, 0}.

Note that Assumption A1 is consistent with condition (b) in Lemma A3. The construction

of ψl that follows will guarantee that ψl is a best-response for an l-round in any period and

with any initial augmented state, if all other players satisfy Assumption A1. We will then

justify Assumption A1 as describing best-response strategies. Take any l-round, say player i,

and any stationary∗ strategy-profile Ψ−i such that ψH and ψh satisfy (11) and Assumption

A1 holds. As argued before, there is no period in which both H-squares and h-rounds wait

at the market. Therefore, for any t, the stock kt ≡ (ktH , k
t
L, k

t
h, k

t
l ) satisfies k

t
Hk

t
h = 0 and

−k̄fifo ≤ ktHh ≤ k̄fifo. In addition, by Assumption A1, there is no period in which at least

two L-squares and two l-rounds wait by demanding h-rounds and H-squares, respectively.

We characterize the set of augmented states for player i, which we denote by Θ′l ⊆ Θl. Let

K ⊆ Z4
+ denote the set of possible states at the end of each period. That is,

k ≡ (kH , kL, kh, kl) ∈ K ⇐⇒

(i) kH + kL = kh + kl,
(ii) kHkh = 0,
(iii) −k̄fifo ≤ kHh ≤ k̄fifo,
(iv) kHh ≥ 0 =⇒ kL ≤ 1, and kHh ≤ 0 =⇒ kl ≤ 1.

Then, Θ′l is a subset of Θl such that

(s, q) ∈ Θ′l ⇐⇒ (∃k ∈ K) s.t. s− k ∈ {(1, 0, 1, 0), (0, 1, 0, 1), (1, 0, 0, 1), (0, 1, 1, 0)}
and q ≤ sl.

It is clear that Θ′l is finite, and for any (s, q) ∈ Θ′l, we have 0 ≤ q ≤ k̄fifo + 2. It is suffi cient

to define ψl over augmented states in Θ′l only, as an augmented state (s, q) /∈ Θ′l never occurs.

Under the FIFO protocol, the ranking of an l-round, such as our player i, improves as she

waits in the market. Thus, player i’s continuation payoff from the (MDP ) after her rank

becomes 1 is independent of her actions in a state with a rank lower than 1. For each possible

ranking of an l-round, q ∈ {1, 2, . . . , k̄fifo + 2}, let Θ′l,q be the set of augmented states with

rank q (i.e., Θ′l,q ≡ {s | (s, q) ∈ Θ′l}). We construct ψl,q : Θ′l,q → {H,L} sequentially from
q = 1 to q = k̄fifo+2, and define ψl : Θ′l → {H,L} as ψl(s, q) ≡ ψl,q(s, q). In the construction,

we will guarantee that ψl constitutes a best-response for an l-round, taking as given ψH , ψh,

and Assumption A1 applied to all other players. The proof is inductive with the following

induction hypothesis:
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Induction Hypothesis There exists ψl,q : Θ′l,q → {H,L} for q ≤ k̄fifo + 2 such that,

1. ψl,≤q = (ψl,q, ψl,q−1, . . . , ψl,1) is a optimal SD-policy for player i, and

2. the maximal total expected payoff for player i, given any θi = (s, qi) ∈ Θ′l,q, is

v∗i (θi) ≤ max

{
Ul(L), Ul(H)− (k̄fifo − sHh + qi)c

p

}
.

Step 1: Construction of ψl,1
Consider an l-round, say our player i, who is the first in the queue at some period. Player

i solves a dynamic decision problem, defined by ψH , ψh, and Assumption A1 (applied to other

players’strategies). We extend player i’s decision problem as a (MDP ) with an arbitrary

initial state θi ∈ Θ′l,1. Let v
∗(θi) denote the maximal expected total payoff for player i with

an initial augmented state θi. Theorem Puterman 3 guarantees that there exists an optimal

SD-policy. Moreover, any policy whose values solve the optimality equation is optimal by

Theorem Puterman 2, which allows us to choose a particular optimal SD-policy ψl,1 consistent

with Assumption A1. To proceed with the construction, we show the following Claims.

Claim 1 For any θi ∈ (s, 1) ∈ Θl,1, we have v∗(θi) ≤ max
{
Ul(L), Ul(H)− (k̄fifo−sHh+1)c

p

}
.

Proof of Claim 1: Take an l-round, say player i, who is the first in the queue for l-rounds in

some period, which we normalize to be t0 = 0, and augmented state (s0, 1) ∈ Θ′l,1. Given ψH ,

to match with an H-square, player i must wait for at least k̄fifo − s0
Hh + 1 additional arrivals

of H-squares. Consider now the following optimal stopping problem:

[P] A boy ( l) stands under an apple tree and holds a banana. In each period, one

apple falls from the tree with probability p. The first k̄∗(≡ k̄fifo − s0
Hh) apples

should be handed over to the owner of the tree. The boy can consume exactly one

piece of fruit, either an apple or a banana. He prefers an apple, with payoff Ul(H),

to the banana, with payoff Ul(L). Thus, while he can consume the banana and walk

away with Ul(L) in any period, he may want to wait for falling apples. He incurs

a cost c for each period of waiting without consuming any fruit.

Let Θ(P ) ≡ {0, 1, . . . , k̄∗ + 1} ∪ {∆} denote the state space of [P], where ∆ denotes the

(absorbing) state after the boy consumes a piece of fruit. In each period t and state θt(P ) ∈
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Θ(P )\{∆}, the boy chooses a demand d ∈ {H,L}. The stage payoff from demand H is either

Ul(H) in state θt(P ) = k̄∗ + 1, or −c in any other state in Θ(P )\{∆}. The stage payoff from
demand L is Ul(L) in any state in Θ(P )\{∆}. In state ∆ (i.e., after consuming a piece of

fruit), the boy gets zero stage payoff forever. The value of [P] with an arbitrary initial state

θ ∈ Θ(P ) is43

v∗(P )(θ) ≡ sup
µ
Eµ

[ ∞∑
t=0

u(d, θt) : θ0 = θ

]
.

It is clear from the description of [P] that v∗(P )(0) constitutes an upper bound for the

maximal expected total payoff of player i (i.e., v∗(θi)). In fact, unlike player i, the boy in

[P] can always consume a banana and walk away. Also, while player i must wait for at least

k̄∗ + 1 arrivals of H-squares to match with an H-square, the boy in [P] is guaranteed to get

the (k̄∗ + 1)-th falling apple. As such, to prove the claim, it is suffi cient to show that

v∗(P )(0) ≤ max

{
Ul(L), Ul(H)− (k̄fifo − s0

Hh + 1)c

p

}
.

Let

k̄∗∗ ≡
⌊
p(Ul(H)− Ul(L))

c

⌋
≤ k̄fifo.

(i) Suppose that k̄∗ < k̄∗∗. Then, compared to consuming a banana immediately, it is

weakly more profitable to wait until k̄∗+ 1 = k̄fifo− s0
Hh + 1(≤ k̄∗∗) apples fall. Once the boy

decides to wait, he will continue to wait until he obtains an apple. Thus,

v∗(P )(0) = Ul(H)− (k̄∗ + 1)c

p
= Ul(H)− (k̄fifo − s0

Hh + 1)c

p
.

(ii) Suppose that k̄∗ = k̄∗∗. As v∗(P )(·) solves the optimality equation, we have

v∗(P )(0) = max
{
Ul(L),−c+ p

(
v∗(P )(1)

)
+ (1− p)

(
v∗(P )(0)

)}
.

Suppose, toward a contradiction, that

v∗(P )(0) = −c+ p
(
v∗(P )(1)

)
+ (1− p)v∗(P )(0) > Ul(L).

Then,

v∗(P )(0) = v∗(P )(1)− c

p
=

(
Ul(H)− k̄∗c

p

)
− c

p
= Ul(H)− (k̄∗∗ + 1)c

p
> Ul(L),

43The limit exists, because P is a positive bounded problem (see p.279 of Puterman, 2005).
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where the second equality follows from case (i) above (after the first apple falls, the boy needs

to hand over only k̄∗−1(< k̄∗∗) additional apples to the owner). Notice that the last inequality

contradicts the definition of k̄∗∗. Therefore, v∗(P )(0) ≤ Ul(L).

(iii) Suppose that k̄∗ > k̄∗∗. More apples should be handed over to the owner than in the

previous case, so v∗(P )(0) ≤ Ul(L).

This concludes the proof of Claim 1.

Claim 2 There exists an optimal SD-policy ψl,1 : Θ′l,1 → {H,L} of the (MDP ) for player i

such that ψl,1(θi) = L, for all θi = (s, 1) ∈ Θ′l,1 with sHh < 1.

Proof of Claim 2: Let ψl,1 : Θ′l,1 → {H,L} such that

ψl,1(θi) =

{
H if v∗(θi) > Ul(L),
L if v∗(θi) ≤ Ul(L).

Then, vi(·;ψl,1) : Θ′l,1 → R ∪ {−∞} is a solution of the optimality equation of player i’s
(MDP ). It follows from Theorem Puterman 2 that the SD-policy ψl,1 is optimal. By Claim

1, for any θi = (s, 1) ∈ Θ′l,1 with sHh < 1,

v∗i (θi) ≤ max

{
Ul(L), Ul(H)− (k̄fifo + 1)c

p

}
= Ul(L),

so that ψl,1(θi) = L. This concludes the proof of Claim 2.

Step 2: Construction of ψl,q+1 given (ψl,1, ψl,2, . . . , ψl,q)

Fix q ∈ {1, 2, . . . , k̄fifo + 1}. For an l-round, say player i, who enters as q-th in line,

we extend the player’s dynamic decision problem as a (MDP ) with an arbitrary initial

augmented-state set Θ′l,≤q ≡
⋃
q′≤q Θ′l,q′ . Note that the (MDP ) for player i is defined by

ψH , ψh, ψl,<q ≡ (ψl,q−1, ψl,q−2, . . . , ψl,1), ψL,<q ≡ (ψL,q−1, ψL,q−2, . . . , ψL,1), and by Assump-

tion A1 applied to other players’strategies.

Now, consider an l-round, say player j, who is (q+1)-th in line at some period t0 = 0 (nor-

malized). Player j solves a dynamic decision problem. As before, we extend player j’s problem

as a (MDP ) with an arbitrary initial augmented state in the set Θ′l,≤q+1 ≡
⋃
q′≤q+1 Θ′l,q′. Note

that player j’s (MDP ) is defined by ψH , ψh, ψL,≤q, ψl,≤q, and by Assumption A1 applied to

other players’strategies. As the set of augmented states for player j is still finite, there exists

an optimal SD-policy (see Theorem Puterman 3). Moreover, any policy whose values solve

the optimality equation is optimal (see Theorem Puterman 2). In particular, it is optimal for
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player j to follow any optimal SD-policy of his (MDP ) until his rank becomes q, after which

he switches to any optimal policy of a (MDP ) for an l-round who enters as q-th in line. Thus,

to find an optimal policy for player j, it is suffi cient to find a function ψl,q+1 : Θ′l,q+1 → {H,L}
that is consistent with Assumption A1.

Claim 3 For any θj = (s, q + 1) ∈ Θ′l,q+1,

v∗j (θj) ≤ max

{
Ul(L), Ul(H)− (k̄fifo − sHh + q + 1)c

p

}
.

Proof of Claim 3: Take an l-round, say player j, who is (q + 1)-th in the queue of l-rounds

in period t0 = 0 (normalized), and any augmented state (s0, q+ 1) ∈ Θ′l,q+1. Two observations

will be useful:

1. In any augmented state θj = (s, q + 1) ∈ Θ′l,q+1, if there exists any q
′ < q + 1 such that

ψ(s,q′) = L, the maximum expected continuation payoff for player j is at most Ul(L).

2. In any augmented state θj = (s, q+1) with sHh = k̄fifo+1, the first l-round in the queue

matches with an H-square. Thus, the maximum expected continuation payoff for player

j (i.e., v∗j (θj)) equals v
∗
j (s
′, q), where s′ denotes the augmented state after matching the

first l-round with an H-square.44 As s′Hh = k̄fifo, by the induction hypothesis holding

up to q,

v∗j (θj) = v∗j (s
′, q) ≤ max

{
Ul(L), Ul(H)− qc

p

}
.

Player j either matches with an L-square and receives Ul(L) while his rank is q+ 1 or has

a corresponding augmented state at some period before matching. Moreover, starting from

an arbitrary initial augmented state θ0
j = (s0, q+ 1), the second case occurs only after at least

k̄fifo − s0
Hh + 1 arrivals of H-squares. Consider the following optimal stopping problem:

[P’] A boy ( l) stands under an apple tree and holds a banana. In each period,

one apple falls from the tree with probability p. The first k̄∗(≡ k̄fifo− s0
Hh) falling

apples should be handed over to the owner of the apple tree. The boy can consume

exactly one piece of fruit, either an apple or the banana. He (weakly) prefers an

apple, with payoff U ′l (H) ≡ max
{
Ul(L), Ul(H)− qc

p

}
, to the banana, with payoff

44That is, (s′H , s
′
L, s
′
h, s
′
l) = (sH , sL, sh, sl)− (1, 0, 0, 1).
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Ul(L). Thus, while he can consume the banana and walk away in any period, he

may want to wait for falling apples. He incurs a cost c for each period of waiting

without consuming any fruit.

Similar to the proof of Claim 1, let Θ(P ′) ≡ {0, 1, . . . , k̄∗+ 1}∪ {∆} denote the state space
of [P’], where ∆ denotes the (absorbing) state after the boy consumes a fruit. The value of

[P’] with an arbitrary initial state θ ∈ Θ(P ′) exists (by similar arguments to those used for

the existence of the value of [P]). The value of [P’] with the initial condition 0, denoted by

v∗(P ′)(0), is an upper bound of the maximal expected payoff for player j. Unlike player j, the

boy in [P’] can always consume a banana and walk away. While player j must wait for at least

k̄∗ + 1 arrivals of H-squares to get an expected continuation payoff of U ′l (H), the boy in [P’]

is guaranteed to get U ′l (H) after k̄∗ + 1 falling apples. As such, it is suffi cient to prove that

v∗(P ′)(0) ≤ max

{
Ul(L), Ul(H)− k̄fifo − s0

Hh + q + 1

p

}
.

Let k̄∗∗ ≡
⌊
p(U ′l (H)−Ul(L))

c

⌋
≤ k̄fifo. As in the proof of Claim 1, we consider three cases:

(i) Suppose that k̄∗ < k̄∗∗. Compared to consuming a banana immediately, it is weakly

more profitable to wait until k̄∗ + 1 = k̄fifo − s0
Hh + 1(≤ k̄∗∗) apples fall. Once the boy waits,

he will continue to wait until he obtains an apple. Thus,

v∗(P ′)(0) = U ′l (H)− (k̄∗ + 1)c

p
= U ′l (H)− (k̄fifo − s0

Hh + 1)c

p

≤ max

{
Ul(L), Ul(H)− (k̄fifo − s0

Hh + q + 1)c

p

}
.

(ii) Suppose that k̄∗ = k̄∗∗. As v∗(P ′)(·) solves the optimality equation (see Theorem Puter-
man 1),

v∗(P ′)(0) = max
{
Ul(L),−c+ p(v∗(P ′)(1)) + (1− p)(v∗(P ′)(0))

}
.

Assume, toward a contradiction, that

v∗(P ′)(0) = −c+ p(v∗(P ′)(1)) + (1− p)(v∗(P ′)(0)) > Ul(L).

Then,

v∗(P ′)(0) = v∗(P ′)(1)− c

p
= U ′l (H)−

(
k̄∗ + 1

)
c

p
= U ′l (H)− (k̄∗∗ + 1)c

p
> Ul(L),
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where the second equality is from case (i). After the first falling apple, the boy needs to hand

over only k̄∗ − 1(< k̄∗∗) additional apples to the owner. The last inequality contradicts the

definition of k̄∗∗. Therefore, v∗(P ′)(0) ≤ Ul(L).

(iii) Suppose that k̄∗ > k̄∗∗. More apples should be handed over to the owner than in the

previous case, so v∗(P ′)(0) ≤ Ul(L).

This concludes the proof of Claim 3.

Claim 4 There exists ψl,q+1 : Θ′l,q+1 → {H,L} with

ψl,q+1(θj) = L, for all θj = (s, q + 1) ∈ Θ′l,q+1 with sHh < q + 1,

such that ψl,≤q+1 = (ψl,q+1, ψl,q, . . . , ψl,1) is an optimal SD-policy of the (MDP ) for

player j.

Proof of Claim 4: Let ψl,≤q+1 : Θ′l,q+1 → {H,L} such that

ψl,q+1(θj) =

{
H if v∗j (θj) > Ul(L)
L if v∗j (θj) ≤ Ul(L).

Then, v(·;ψl,≤q+1) : Θ′l,≤q+1 → R ∪ {−∞} solves the optimality equation of the (MDP ) for

player j. It follows from Theorem Puterman 2 that ψl,≤q+1 is optimal.

By Claim (1), for any θj = (s, q + 1) ∈ Θ′l,q+1 with sHh < q + 1,

v∗j (θj) ≤ max

{
Ul(L), Ul(H)− (k̄fifo + 1)c

p

}
= Ul(L),

so ψl,q+1(θj) = L. This concludes the proof of Claim 4.

To conclude the proof of Lemma A3, let us turn to Assumption A1. Thus far, we have

constructed ψl, which ascribes a best-response for an l-round for any initial augmented state,

given ψH , ψh, and Assumption A1 applied to strategies of others. To conclude the proof, we

need to guarantee that the ψl we constructed satisfies Assumption A1. Take any stationary
∗

strategy-profile Ψ = (ψH , ψL, ψh, ψl) such that ψH and ψh satisfy (11), and ψl and ψL are

constructed as described above. Suppose that both L-squares and l-rounds exist in the market

in a period t after a new pair arrives. We consider the case of stHh ≥ 0 (and omit an analogous

proof for the case of stHh < 0). For any l-round, say player i, with rank qi > stHh, Claims 2

and 4 imply that player i would demand L. The counterpart of Claims 2 and 4 for L-squares

implies that every L-square, say player j, demands an l-round as qj ≥ 1 = 1+s−Hh. Therefore,

Assumption A1 describes best-response behavior. This concludes the proof of Lemma A3. �

54



Proof of Lemma 1: The proof follows directly from Lemmas A2 and A3 above. �

Proof of Lemma 2. We show that the part (b) of Lemma A3 guarantees Lemma 2. Take a

stationary∗ equilibrium Ψ∗ satisfying conditions (a) and (b) in Lemma A3. Initially, there is

no agent waiting in the market. Suppose that both an L-square and an l-round are present in

some period t, for the first time ever. Given (11) (and a similar condition for ψ∗h), it must be

that either (i) stH ≥ 0, sth = 0, stL = 1, and stl = stH + stL, or (ii) s
t
H = 0, sth ≥ 0, stL = sth + stl ,

and stl = 1. In both instances, there exists an L-square who finds no available h-round and

demands an l-round, and an l-round who finds no available H-square and demands an L-

square. As such, one (L, l) pair will be matched, and only incongruent pairs of agents (i.e.,

either H-squares and l-rounds, or L-squares and h-rounds) wait until period t+ 1. A similar

argument shows that in any period in which an L-square and an l-round coexist, for the second

time, third time, etc., one (L, l) pair will be formed. �

Proof of Proposition 3: First, the (signed) length of the H-h queue, denoted by kHh,

constitutes an ergodic Markov chain. Following arguments in the body of the paper, the unique

steady state distribution of kHh is the uniform distribution over {−k̄dec,−k̄dec + 1, . . . , k̄dec}.
At any time t, suppose that ktHh > 0. Clearly, the queue has no h-rounds. As equal numbers

of squares and rounds enter and exit the market, it must be that kHh + kL = kl. Lemma 2

guarantees that kL = 0, therefore kl = kHh. An analogous argument follows for kHh ≤ 0. �

Proof of Corollary 3: Whenever c > p(1−p)U
2

, the optimal mechanism matches arriving

agents immediately, k̄opt = 0, and k̄opt ≤ k̄dec. Suppose, then, that c < p(1−p)U
2

. We then have√
p(1− p)U

2c
<
p(1− p)U

2c
≤ pU

2c
≤ p(UH(h)− UH(l))

c
.

and the result follows from the definitions of k̄opt and k̄dec. �

8.3 Proof Regarding Welfare Comparisons

Proof of Proposition 4:

Part 1: As in the proof of Corollary 1, W opt(c) − W fifo(c) is differentiable at any c <
p(1−p)U

2
such that k̄opt, k̄fifo /∈ Z+. In a small neighborhood around any such c, the thresholds

corresponding to both the optimal and discretionary thresholds are constant in c. Therefore,

d(W opt(c)−W fifo(c))

dc
= −2k̄opt(k̄opt + 1)

2k̄opt + 1
+

2k̄fifo(k̄fifo + 1)

2k̄fifo + 1
≥ 0,
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where the inequality follows from k̄fifo ≥ k̄opt (Corollary 3). Furthermore, the proof of

Corollary 1 implies that W opt(c) is continuous in c and so W opt(c) −W fifo(c) is increasing

in any point c for which k̄fifo /∈ Z+. Let {dk}∞k=1 denote the decreasing sequence of costs

such that k = p(UH(h)−UH(l))
dk

. That is, cost dk corresponds to the maximal cost such that the

equilibrium threshold is k in the discretionary process under FIFO. For an arbitrary k, we

will show that

W opt(dk+1)−W opt(dk) > W fifo(dk+1)−W fifo(dk). (13)

First, we focus on W opt(dk+1) − W opt(dk). Note that W opt(c) is piece-wise linear and

continuous in c. It follows that:

W opt(dk+1)−W opt(dk) =

∫ dk

dk+1

2k̄opt(c)(k̄opt(c) + 1)

2k̄opt(c) + 1
dc.

Let k0 ≡
⌊√

p(1−p)U
2dk

⌋
. For any c ∈ [dk+1, dk], k̄opt(c) ≥ k0 and

2k̄opt(c)(k̄opt(c) + 1)

2k̄opt(c) + 1
=

1

2

(
(2k̄opt(c) + 1)− 1

2k̄opt(c) + 1

)
≥ 2k0(k0 + 1)

2k0 + 1
.

Thus,

W opt(dk+1)−W opt(dk) ≥
∫ dk

dk+1

2k0(k0 + 1)

2k0 + 1
dc =

2k0(k0 + 1)

2k0 + 1
(dk − dk+1)

=
2k0(k0 + 1)

2k0 + 1
p(UH(h)− UH(l))

(
1

k
− 1

k + 1

)
=

2k0(k0 + 1)

2k0 + 1

p(UH(h)− UH(l))

k(k + 1)
.

Next, we consider W fifo(dk+1)−W fifo(dk). Denote by

W (m, c) ≡ S∞ −
p(1− p)U

2m+ 1
− 2m(m+ 1)c

2m+ 1
.

Note that

W fifo(dk+1)−W fifo(dk) = W (k + 1, dk+1)−W (k, dk)

= W (k + 1, dk+1)−W (k + 1, dk) +W (k + 1, dk)−W (k, dk).

We use the following two observations:

W (k + 1, dk+1)−W (k + 1, dk) =
2(k + 2)p(UH(h)− UH(l))

k(2k + 3)
,

and

W (k + 1, dk)−W (k, dk) =
1

(2k + 1)(2k + 3)

(
2p(1− p)U − 4(k + 1)2p(UH(h)− UH(l))

k

)
.
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Thus,

W fifo(dk+1)−W fifo(dk) =
2(k + 2)p(UH(h)− UH(l))

k(2k + 3)
+

2p(1− p)U
(2k + 1)(2k + 3)

−4(k + 1)2p(UH(h)− UH(l))

k(2k + 1)(2k + 3)
.

To prove (13), it suffi ces to show that

2k0(k0 + 1)

2k0 + 1

2k + 3

k + 1
>

2k

2k + 1
+

2k

2k + 1

(1− p)U
UH(h)− UH(l)

. (14)

To prove the above inequality, we consider the following two cases:

1. (k0 ≥ 2) Note that

U

UH(h)− UH(l)
<

(UH(h)− UH(l)) + (Uh(H)− Uh(L))

UH(h)− UH(l)
= 2. (15)

Since the left hand side of (14) is increasing in k0, for (14) to hold, it suffi ces that

12

5

2k + 3

k + 1
>

2k

2k + 1
+

4k

2k + 1
=

6k

2k + 1
,

which holds for all k.

2. (k0 = 1) One suffi cient condition for (14) using (15) is 4(2k+3)
3(k+1)

> 6k
2k+1

, which holds for

k = 1, 2, or 3. Since k0 = 1,

p(1− p)U
2dk

=
(1− p)Uk

2(UH(h)− UH(l))
< 4.

Thus, another suffi cient condition for (14) in this case is 4(2k+3)
3(k+1)

> 2k+16
2k+1

, which holds for

k ≥ 4.

To construct the partition in the proposition, let k = max {k | dk ≥ c} and k = min{k |
dk < c}. Now define c1 = c, cM = c. If k = k, set M = 2 and the partition has only one atom.

Otherwise, if k < k, set M = k − k + 2 and ci = dk−i+1 for i = 2, ...,M − 1.

Part 2: Notice that

lim
c→0

(
W opt(c)−W fifo(c)

)
= lim

c→0
Ψ(c)− lim

c→0
Θ(c) = p (UH(h)− UH(l)) .

In particular, for suffi ciently small c, W opt(c)−W fifo(c) is increasing in both p and UH(h)−
UH(l), as needed. �
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8.4 Proofs Regarding the LIFO Protocol

Proof of Lemma 3: For an H-square, say player i, let θi = (s, qi) denote her augmented

state, where qi now denotes her rank under the LIFO protocol. A threshold strategy is a

SD-strategy ψH such that, with some k̄H ∈ Z+,

ψH(θi) =

{
h if qi ≤ k̄H
l if qi > k̄H + 1

. (16)

Similarly, we define a threshold strategy for h-rounds with the threshold denoted by k̄h.

Suppose that all H-squares play a threshold strategy ψH with threshold k̄H ∈ Z+. We use

an absorbing Markov chain to compute the expected total payoff for an H-square, say player

i, whose augmented state is θti = (st, qti) in some period t. The state space of the absorbing

Markov chain is {1, 2, 3, . . . , k̄H , h, l} where integer transient states denote player i’s ranking
qτi (1 if there are no H-squares who arrived after i that are waiting), and each of the two

absorbing states h and l denote the type of player i’s match partner. The event time τ starts

from 0 and increases for each arrival of an incongruent pair.45 In expectation, an increment

of τ takes 1
2p(1−p) periods. The matrix of transition probabilities pij from state i to j is

P =

[
Q R
0 I

]
, where Q =


0 1/2 · · · 0

1/2 0 · · · 0
...

...
. . .

...
0 · · · 0 1/2
0 · · · 1/2 0

 , R =


1/2 0
0 0
...

...
0 1/2,

 , and I =

[
1 0
0 1

]
.

Q represents the transitions between transient states. For any 1 < k < k̄H , the state changes

upon an arrival of either an (H, l) or a (L, h) pair, each of which occurs with conditional

probability 1/2. R11 represents the probability of a transition from qi = 1 to an absorbing

state h caused by an arrival of a (L, h) pair. Rk̄H2 represents the transition from qi = k̄H

to an absorbing state l caused by an arrival of an (H, l) pair. Let N ≡ (Ik̄H − Q)−1, T ≡
N · 1, and L ≡ NR. The absorbing Markov chain with initial state k ∈ {1, 2, . . . , k̄H} is
absorbed in Tk expected number of steps. It is absorbed by state h (or l) with probability

Lkh (or Lkl, respectively). It is easy to verify that N is a symmetric matrix with Nij =
2j(k−i+1)

k+1
for all i ≥ j, Tk = Tk̄H+1−k =

∑k
i=1(k̄H − 2(i − 1)) for all k ≤ k̄H/2, and Lk2 =

1−Lk1 = k/(k̄H + 1) for k = 1, . . . , k̄H . The expected total payoff for player i in period t with

45An arrival of (H,h) or (L, l) does not change player i’s position in line. In particular, if an (H,h) pair
arrives, the new players match with each other immediately under LIFO.
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initial condition qti = k is

Lk1UH(h) + Lk2UH(l)− Tk
c

2p(1− p) . (17)

This payoff is strictly decreasing in k, implying that an l-round with rank k̄H has the highest

incentive to deviate from ψH by demanding l, among all H-squares who are supposed to

demand h according to ψH . The total expected payoff for player i with q
t
i = k̄H is

1

k̄H + 1
UH(h) +

k̄H
k̄H + 1

UH(l)− k̄Hc

2p(1− p) .

This payoff is strictly decreasing in k̄H . Thus, there exists a maximum threshold k̄lifo such

that player i’s payoff exceeds UH(l).46 After some algebraic steps, one can verify that

k̄lifo ≡
⌊√

2p(1− p)(UH(h)− UH(l))

c
+

1

4
− 1

2

⌋
. (18)

Next, we show that if Ψ = (ψH , ψL, ψh, ψl) is a stationary
∗ equilibrium in which ψH (and

ψh) is a threshold strategy with a threshold k̄H (respectively, k̄h), then, k̄H = k̄h = k̄lifo.

(i) Suppose, toward a contradiction, that k̄H > k̄lifo. Take any H-square i whose aug-

mented state in some period t satisfies qti = k̄H . Her expected total payoff from period t by

playing ψH is strictly lower than UH(l). Therefore, player i has an incentive to deviate and

demand an l-round.

(ii) Suppose, toward a contradiction, that k̄H < k̄lifo. Take any H-square i whose aug-

mented state in some period t satisfies qti = k̄. We will show that player i has an incentive

to deviate and use the threshold k̄H + 1 instead of k̄H perpetually till matching. Consider an

absorbing Markov chain with the state space {1, 2, . . . , k̄H , k̄H + 1, h} such that each integer
transient state denotes player i’s ranking. The absorbing state h represents the only possible

match partner for i, a match with an h-round. The queue for H-squares never exceeds the

threshold k̄H + 1, because all other H-squares use the threshold k̄H . Therefore, player i will

never match with an l-round. The transition probability matrix is

P =

[
Q R
0 1

]
, where Q =


0 1/2 0 · · · 0 0

1/2 0 1/2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1/2 1/2

 and R =


1/2
0
...
0

 .
46The last payoff is never equal to UH(l) because of the regularity assumption.
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To understand Q(k̄H+1)(k̄H+1) = 1/2, suppose that player i’s augmented state in some period

τ satisfies qτi = k̄H +1. If an (H, l) pair arrives in the following period, one of other H-squares

who play ψH with threshold k̄H demands an l-round and leaves the market. Player i’s rank

(i.e., the state in the absorbing Markov chain) will remain at k̄H + 1. Let N ≡ (Ik̄H+1 −Q)−1

and T ≡ N · 1. The absorbing Markov chain with initial state k ∈ {1, 2, . . . , k̄H + 1} is
absorbed by state h in Tk expected number of steps. It is easy to verify that N is a symmetric

matrix with Nij = 2j for all i ≥ j, and Tk = 2
∑k

i=1(k̄H + 2 − i). Therefore, when player i’s
augmented state in period τ is qτi = k̄H + 1, she would deviate from ψH by increasing the

threshold to k̄H + 1 permanently because

UH(h)− (k̄H + 1)(k̄H + 2)c

2p(1− p) ≥ UH(h)− (k̄lifo)(k̄lifo + 1)c

2p(1− p) > UH(l).

Thus, a stationary∗ strategy ψH with threshold k̄H < k̄lifo cannot be a stationary∗ equilibrium

strategy. �
Proof of Lemma 4: First, consider the decisions of H-squares. Suppose that H-squares

play a stationary∗ strategy ψH with threshold k̄lifo. We prove that, for each H-square, say

player i, ψi = ψH is an optimal policy of the (MDP) (without restrictions on her initial state),

defined by other H-squares’strategy ψH . It follows that ψH is each H-square’s best-response.

Given any initial augmented state θi = (s, qi) and other H-squares’strategy ψH , define the

value of policy ψi(= ψH) as

vi(θi;ψi, ψH) ≡ Eψi

[ ∞∑
t=0

ui(ψi(θ
t
i), θ

t
i) : θ0

i = θi

]
.

From equation (17), we obtain that

vi(θi;ψi, ψH) =


UH(h) if qi ≤ sh(

1− k
k̄lifo+1

)
UH(h) + k

k̄lifo+1
UH(l)− Tk c

2p(1−p) if k ≡ qi − sh ∈ {1, . . . , k̄lifo}
UH(l) if qi − sh > k̄lifo.

It is easy to verify that vi(θi;ψi, ψH) solves the optimality equation

v(θi) = max
di∈{h,l}

ui(di, θi) +
∑
θ′i∈Θi

p(θ′i : θi, di)V (θ′i)

 for all θi ∈ Θi.

Then, by Theorem Puterman 2 appearing in the Appendix, ψi is an optimal SD-policy of the

Markov decision problem, defined by other H-squares’stationary∗ strategy ψH . Let us now
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turn to the l-rounds’decisions. Suppose that H-squares (and h-rounds) play the stationary∗

strategy with threshold k̄lifo. Then, only if an (H, l) pair arrives, there may exist an H-square

(in fact, exactly one H-square) who may demand an l-round, and she matches with the last

arriving l-round. Thus, if an l-round remains unmatched after the first period at the market,

he won’t match with an H-square ever again. Thus, every l-round has an incentive to leave

immediately. Therefore, we have that

ψl(s, qi) =

{
h if sHh ≥ k̄lifo + 1 and qi = 1
l otherwise,

(19)

is a best-response for all l-rounds with any initial augmented state. �
Proof of Corollary 5:

1. Ignoring integer constraints, we have

lim
c→0

k̄opt

k̄lifo
= lim

c→0

√
p(1−p)U

2c√
2p(1−p)(UH(h)−UH(l))

c
+ 1

4
− 1

2

=

√
p(1− p)U√

4p(1− p)(UH(h)− UH(l))

=
1

2

√
U

UH(h)− UH(l)
< 1,

where the last inequality is due to U < 4 (UH(h)− UH(l)) under our symmetry assumption.

Furthermore, we have k̄lifo < k̄fifo if and only if√
2p(1− p)(UH(h)− UH(l))

c
+

1

4
− 1

2
<
p(UH(h)− UH(l))

c
. (20)

Let x ≡ 2p(1−p)(UH(h)−UH(l))
c

and z ≡ p(UH(h)−UH(l))
c

, so that inequality (20) is equivalent to√
x+ 1

4
< z + 1

2
, or x < z2 + z. Thus, (20) is satisfied if and only if

2p(1− p)(UH(h)− UH(l))

c
<
p2(UH(h)− UH(l))2

c2
+
p(UH(h)− UH(l))

c
,

or equivalently

1− 2p <
p(UH(h)− UH(l))

c
.

Therefore, if p ≥ 1
2
, then 1 − 2p ≤ 0, and k̄lifo < k̄fifo for any c > 0. If p < 1

2
, then

1− 2p > 0, and k̄lifo < k̄fifo for any c < p(UH(h)−UH(l))
1−2p

.

2. As k̄lifo =
√

2p(1−p)(UH(h)−UH(l))
c

+ 1
4
− 1

2
and

W lifo(c) = S∞ −
p(1− p)U
2k̄lifo + 1

− 2k̄lifo(k̄lifo + 1)

2k̄lifo + 1
c, (21)

it is easy to verify that limc→0W
lifo(c) = S∞. �

61



9 References

Akbarpour, Mohammad, Shengwu Li, and Shayan Oveis Gharan. 2019. “Thickness and Information in

Dynamic Matching Markets,”Journal of Political Economy, forthcoming.

Anderson, Ross, Itai Ashlagi, David Gamarnik, and Yash Kanoria. 2017. “Effi cient Dynamic Barter Ex-

change,”Operations Research, 65(6), 1446-1459.

Ashlagi, Itai, Maximilien Burq, Patrick Jaillet, and Vahideh H. Manshadi. 2018. “On Matching and Thickness

in Heterogeneous Dynamic Markets,”mimeo.

Ashlagi, Itai, Patrick Jaillet, and Vahideh H. Manshadi. 2014. “Kidney Exchange in Dynamic Sparse Het-

erogenous Pools,”mimeo.

Baccara, Mariagiovanna, Allan Collard-Wexler, Leonardo Felli, and Leeat Yariv. 2014. “Child-Adoption

Matching: Preferences for Gender and Race,”American Economic Journal: Applied Economics, 6(3), 133-

158.

Baccara Mariagiovanna, SangMok Lee, and Leeat Yariv. 2018. “Optimal Dynamic Matching," CEPR Discus-

sion Paper 12986.

Becker, Gary S. 1974. “A Theory of Marriage: Part II,”The Journal of Political Economy, 82(2), S11-S26.

Bloch, Francis and David Cantala. 2017. “Dynamic Assignment of Objects to Queuing Agents,”American

Economic Journal: Microeconomics, 9, 88-122.

Burdett, Ken and Melvyn G. Coles. 1997. “Marriage and Class,”The Quarterly Journal of Economics, 112(1),

141-168.

Doval, Laura. 2018. “A Theory of Stability in Dynamic Matching Markets,”mimeo.

Doval, Laura and Balász Szentes. 2018. “On the Effi ciency of Queueing in Dynamic MatchingMarkets,”

mimeo.

Eeckhout, Jan. 1999. “Bilateral Search and Vertical Heterogeneity,” International Economic Review, 40(4),

869-887.

Feller, William. 1972. An Introduction to Probability Theory and Its Applications, Volume II (2nd ed.). New

York: John Wiley & Sons.

Ferdowsian, Andrew, Muriel Niederle, and Leeat Yariv. 2019. “Discretionary Matching with Aligned Prefer-

ences,”mimeo.

Gjertson, David W. 2004. “Explainable Variation in Renal Transplant Outcomes: A Comparison of Standard

and Expanded Criteria Donors,”Clinical Transplants, 2004, 303-314.

Gurvich, Itai and Amy Ward. 2014. “On the Dynamic Control of Matching Queues,” Stochastic Systems,

62



4(2), 479-523.

Haeringer, Guillaume and Myrna Wooders. 2011. “discretionary Job Matching,” International Journal of

Game Theory, 40, 1-28.

Hall, Robert E. and Alan B. Krueger. 2012. “Evidence on the Incidence of Wage Posting, Wage Bargaining,

and On-the-Job Search.”American Economic Journal: Macroeconomics, 4(4), 56-67.

Hassin, Refael. 1985. “On the Optimality of First Come Last Served Queues,”Econometrica., 53(1), 201-202.

Hitch, Gunter J., Ali Hortacsu, and Dan Ariely. 2010. “Matching and Sorting in Online Dating,” The

American Economic Review, 100(1), 130-163.

Hu, Ming and Yun Zhou. 2018. “Dynamic Type Matching,”mimeo.

Kemeny, John G. and J. Laurie Snell. 1960. Finite Markov Chains. Springer.

Leshno, Jacob. 2017. “Dynamic Matching in Overloaded Waiting Lists,”mimeo.

Loertscher, Simon, Ellen V. Muir, and Peter G. Taylor. 2018. “Optimal Market Thickness and Clearing,”

mimeo.

Margaria, Chiara. 2017. “Queueing to Learn,”mimeo.

Naor, Pinhas. 1969. “The Regulation of Queue Size by Levying Tolls,”Econometrica., 37(1), 15-24.

Oien, Cecilia M., Anna V. Reisaeter, Torbjørn Leivestad, Friedo W. Dekker, and Pål-Dag Line. 2007. “Living

Donor Kidney Transplantation: The Effects of Donor Age and Gender on Short- and Long-term Outcomes,”

Transplantation, 83(5), 600-606.

Ortoleva, Pietro, Evgenii Safonov, and Leeat Yariv. 2019. “Who Cares More? Allocation with Diverse

Preference Intensities,”mimeo.

Pais, Joana V. 2008. “Incentives in discretionary random matching markets,”Games and Economic Behavior,

64, 632-649.

Platz, Trine Tornøe and Lars Peter Østerdal. 2017. “The Curse of the First-in-First-Out Queue Discipline,”

Games and Economic Behavior, 104, 165-176.

Puterman, Martin L. 2005. Markov Decision Processes: Discrete Stochastic Dynamic Programming, Wiley.

Rogerson, Richard, Robert Shimer, and Randall Wright. 2005. “Search-Theoretic Models of the Labor Market:

A Survey,”Journal of Economic Literature, XLIII, 959-988.

Ross, Sheldon M. 2014 Introduction to Stochastic Dynamic Programming, Academic Press.

Satterthwaite, Mark and Artyom Shneyerov. 2007. “Dynamic Matching, Two-sided Incomplete Information,

and Participation Costs: Existence and Convergence to Perfect Competition,”Econometrica, 75(1), 155-200.

Schummer, James. 2017. “Influencing Waiting Lists,”mimeo.

Stein, Rob. 2011. “Under Kidney Transplant Proposal, Younger Patients would Get the Best Organs,”The

63



Washington Post, February 24.

Taylor, Curtis. 1995. “The Long Side of the Market and the Short End of the Stick: Bargaining Power and

Price Formation in Buyers’, Sellers’, and Balanced Markets,”The Quarterly Journal of Economics, 110(3),

837-855.

Tyurin, Ilya S. 2010. “An Improvement of Upper Estimates of the Constants in the Lyapunov Theorem,”

Russian Mathematical Surveys, 65(3(393)), 201-202.

Ünver, Utku. 2010. “Dynamic Kidney Exchange,”Review of Economic Studies, 77, 372-414.

Zenios, Stefanos A. 1999. “Modeling the Transplant Waiting List: A Queueing Model with Reneging,”Queue-

ing Systems, 31, 239-251.

64


