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Abstract

We consider a model of the criminal court process, focusing on plea bargaining.

A plea bargain provides unequal incentives to go to trial because innocent defendants

are more willing to plead not guilty. We show that the court process implements the

preferences of the person or group who is most concerned about wrongful conviction. If

a prosecutor is more concerned about wrongful conviction than the jury, the prosecutor

can shape the defendant pool at trial so that jurors act according to prosecutor’s

preferences against judicial mistakes. Our model also connects insights from strategic

jury models that usually omit plea bargaining with the actual criminal court process

where most cases are resolved through plea bargaining. As an example, we show that

the inferiority of the unanimity rule established in Feddersen and Pesendorfer (1998)

persists in spite of the addition of plea bargaining.
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1 Introduction

1.1 Overview

In the United States most criminal cases are resolved out of court by plea bargaining. The

defendants often plead guilty in exchange for a more lenient sentence than the one they

might receive with a jury trial. Among the 74,782 convictions in federal courts in 2004, 96%

were achieved through plea bargaining. The rate increased from 87% in 1990 to 96% in 2004

for felony offenses.1

Formal economic analysis of plea bargaining has largely focused on the rather explicit

welfare effects. Most evidently, plea bargains save trial costs for prosecutors, defendants,

and jurors who are involved in the criminal court process (Rabe and Champion, 2002, p.

306-308). Plea bargains also give defendants a chance to avoid the risk of conviction at trial

on more serious charges (Grossman and Katz, 1983).

In this paper, we focus on a less obvious but potentially crucial effect of plea bargain-

ing: influence on jury behavior. In principle, the court instructs jurors to render a verdict

according only to the presented evidence and to the instructions of the court: see, e.g.,

the California Code of Civil Procedure–Section 232 (b). However, jury trials are chosen

by defendants who plead not guilty, and those defendants are more likely to be innocent.

Therefore, it is natural to believe that only a small fraction of criminal cases going to jury

trials may give jurors a first impression that the defendants are possibly innocent. We study

such an effect of plea bargaining on jury behavior. In particular, the prosecutor can use plea

bargaining to shape the defendant pool at trial, which influences jurors’ beliefs about how

likely a defendant at a trial is truly guilty. As a result, the prosecutor can bias jurors’ voting

behavior either for conviction or for acquittal.

The model is effectively a screening and signaling game. A plea bargain allows a prosecu-

tor to screen out some defendants before going to trial. A defendant as a sender signals his

type by pleading either guilty or not guilty, and jurors as receivers update their beliefs on

the sender’s type.2 To emphasize the screening and signaling effect, we intentionally ignore

all costs of going to a jury trial. Agents are also risk neutral: there is no cost of uncertainty

from going to trial.

The model starts with a prosecutor indicting a defendant who is either guilty or innocent.

1See Table 4.2 in the Compendium of Federal Justice Statistics 2004; U.S. Department of Justice, Bureau
of Justice Statistics: http://bjs.ojp.usdoj.gov/content/pub/pdf/cfjs04.pdf.

2We refer to prosecutors and defendants as male and jurors as female.
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Without knowing the defendant’s type, the prosecutor initiates a plea bargain offer. If the

defendant pleads guilty, the case terminates with the offered punishment, or otherwise a

jury trial follows. During testimony, each juror receives a private signal, which represents

the influence of the trial evidence. The signal is imperfectly correlated with the defendant’s

type. If a super-majority of jurors vote for conviction (e.g., a two-thirds majority), the jury

returns a guilty verdict. Otherwise, the jury returns a not-guilty verdict. The prosecutor and

jurors have preferences against mistakenly delivered punishments to innocent defendants or

undelivered punishments to guilty ones.3

We find that the court process implements the preferences of the person or group who is

most concerned about wrongful conviction. If a prosecutor is more concerned about wrongful

conviction than jurors, the prosecutor shapes the defendant pool at trial, which induces the

jurors to vote as if they had the prosecutor’s preferences. If the prosecutor is less concerned

about wrongful conviction, the prosecutor finds no incentive to use plea bargaining, so all

judicial decisions are made according to jurors’ preferences. To understand how this occurs,

consider the following lines of reasoning.

If a guilty defendant considers a plea bargain offer acceptable, he will plead guilty. Jurors

will subsequently account for the decreased chance of having a guilty defendant at trial,

which will lower the probability of conviction. This low conviction rate feeds back to plea

bargaining. The previously acceptable offer becomes unacceptable for the guilty defendant,

and the opposite story follows. A guilty defendant now considers the plea bargain offer

unacceptable. This not guilty plea increases the chance of having a guilty defendant at

trial, which raises the probability of conviction. In equilibrium, guilty defendants will be

indifferent between taking a guilty plea punishment and undergoing a jury trial. Meanwhile,

an innocent defendant chooses to go to a jury trial because he is less likely to be convicted.

The prosecutor attempts to devise a plea bargain offer that ultimately leads to his ideal

conviction probabilities. Suppose the prosecutor cares more than the jurors about mistak-

enly delivering punishment to innocent defendants. If the prosecutor lowers the guilty plea

charge, a guilty defendant is more likely to plead guilty, and a defendant in trial is more

likely to be innocent. As a result, jurors are more careful to avoid convicting an innocent

defendant. However, such influence is possible only in one direction: leading jurors to vote

more frequently for acquittal. As guilty defendants are more likely to take plea bargain

offers, plea bargains can only decrease the likelihood of a guilty defendant at trial. At least

3In this paper, the prosecutor may not single-mindedly pursue convictions. In practice, mismanaged
cases may later become public knowledge, and such exposure will affect a prosecutor’s future career. Even
a self-interested prosecutor will be concerned about false prosecutions.
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as a screening device, plea bargaining is of no use if the prosecutor cares less about convict-

ing an innocent defendant. In this case, all judicial decisions are made according to jurors’

preferences.

Our unified model of plea bargaining and a jury trial can extend the scope of strate-

gic voting models, which often omit plea bargaining, to the actual court process, where

most cases are resolved through plea bargaining. As an example, we revisit the comparison

between the unanimity rule and general super-majority rules studied in Feddersen and Pe-

sendorfer (1998). In a jury trial model without plea bargaining, with a moderate number

of jurors, the probabilities of convicting an innocent defendant and acquitting a guilty de-

fendant under the unanimity rule are significantly higher than those probabilities under any

general super-majority rule. We show that the inferiority of the unanimity rule persists with

the addition of plea bargaining. The expected value of punishment mistakenly delivered

to innocent defendants or not delivered to guilty defendants under the unanimity rule are

significantly higher than the expected value under any general super-majority rule.

Our model is flexible in regards to the choice of the jury trial model. The main idea,

that plea bargaining leads to jurors’ biased belief and voting behavior, remains valid for

any reasonable model of jury trial. However, the inferiority of the unanimity rule may

change. For example, Coughlan (2000) shows that the unanimity rule usually performs better

than any super-majority rule if jurors can deliberate by pooling their private information.

The unanimity rule induces a Nash equilibrium in which jurors honestly pool their private

information and vote unanimously for a choice mutually better for all jurors. If we adopt

Coughlan’s model, the comparison between the unanimity and general super-majority rules

would be reversed.

1.2 Related literature

The closest studies to this paper are Priest and Klein (1984) and Bjerk (2007). Priest and

Klein consider a unified model of pre-trial processes and a jury trial to highlight that pools

of defendants change over the court processes. In Bjerk (2007), a prosecutor receives an

initial signal of a defendant’s type and makes a plea bargain offer. If the defendant rejects

the offer and goes to a jury trial, the jurors receive an updated signal and vote for conviction

or acquittal. The main question is quite different from ours: the prosecutor and the jurors

are assumed to have the same preferences, and the question is whether the prosecutor can

induce their mutually optimal judicial outcomes by using plea bargains.

Studies on criminal court process often assume exogenously given jury behavior. Gross-
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man and Katz (1983) study plea bargain as a screening device, which sorts guilty and

innocent defendants through a self-selection mechanism. However, conviction probabilities

at jury trial are fixed and never influenced by the plea bargain. Reinganum (1988) also

focus on bargaining behavior, ignoring its effects on jury behavior. In her model, the pros-

ecutor knows the strength of the case, and the defendant knows whether he is guilty or

innocent. Lastly, in Baker and Mezzetti (2001), when a case goes to trial, the prosecutor

further investigates the case, and only the additional information affects the jury behavior.

Plea bargaining has been studied predominantly as a bargaining problem. A jury trial

costs time, effort, and uncertainty on final outcomes. Participants in a plea bargain can

share a surplus by not going to jury trial, which is a typical bargaining problem. For a brief

summary of this approach, see e.g., Cooter and Rubinfeld (1989). In this paper, we exclude

count bargaining, in which defendants plead guilty to a subset of multiple original charges.

For a model of bargaining over multiple issues, see, e.g., Busch and Horstmann (1999).

We adopt a strategic voting model as a benchmark model of jury behavior. Each juror

receives private information during testimonies and votes based on her private information

and the condition of being pivotal. In some scenarios, her pivotal position convinces her to

follow other jurors’ votes against her private information (Austen-Smith and Banks, 1996;

Feddersen and Pesendorfer, 1996). Feddersen and Pesendorfer (1998) apply this strategic

voting behavior to a jury trial and find that the unanimity rule is inferior to any general

super-majority rule.

The rest of this paper is organized as follows. We introduce our model in Section 2. In

Section 3, we find equilibrium restrictions in jurors’ voting behavior. The results in this

section also serve as benchmark results of a jury trial without plea bargaining. In Section 4,

we find equilibrium restrictions in plea bargaining. As an application of our model, we revisit

the inferiority of the unanimity rule in Section 5. The conclusion of the paper is provided in

Section 6. All proofs are relegated to the Appendix.

2 The Model

There are three types of agents: a prosecutor, a defendant, and jurors. The punishment after

being convicted in a jury trial is normalized to 1. We assume that the defendant is guilty

(G) with probability π0, and otherwise is innocent (I). Only the defendant knows whether

he is either guilty (G) or innocent (I).

A criminal court process consists of two phases:
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• t = 1: A plea bargain occurs.

The prosecutor makes a plea bargain offer θ ∈ [0, 1]. The defendant pleads either guilty

or not guilty. If the defendant pleads guilty, the case terminates and the punishment

θ is delivered. Otherwise, the plea bargain is withdrawn, and the case proceeds to the

second phase described below.4

• t = 2: A jury trial occurs.

A jury consists of n (n > 1) jurors and a voting rule k̂ (1 < k̂ ≤ n). Each juror receives

a private signal g or i, which is positively correlated with the true state G or I, as

given by

Pr[g|G] = Pr[i|I] = p, Pr[i|G] = Pr[g|I] = 1− p. (1)

We assume that p ∈ (.5, 1): each juror receives a correct signal with probability p, and

receives an incorrect signal with probability 1− p.5

The jury reaches a decision by casting votes simultaneously. If the number of vote to

convict is larger than or equal to the voting rule k̂, the defendant is convicted (C).

Otherwise, the defendant is acquitted (A). We call a rule requiring k̂ = n votes for

conviction the unanimity rule, and others general super-majority rules.

Each type of agent has a utility function defined as follows:

• A defendant:

Utilities are determined negatively by the amount of punishment: −1 if he is convicted,

0 if he is acquitted, and −θ if he pleads guilty. The defendant is assumed to be risk

neutral: if a defendant perceives that he will be convicted with probability h, the

expected utility of going to trial is −h = h · (−1) + (1−h) · 0, which is the same utility

from deterministic punishment h.

• Jurors:

4We consider a simple plea bargaining setup to highlight how the plea bargaining affects jurors’ voting
behavior. A more natural model of plea bargaining would be a dynamic setup with asymmetric information
where both participants can make offers. See, e.g., Inderst (2003) for a model of bargaining with one-sided
private information and alternating offers. In the context of buyer-seller bargaining over a divisible good,
Bac (2000) shows that the participant with informational advantage (cf, a defendant in plea bargaining) may
strategically delay offers which are restricted to only a portion of the good (cf, a part of criminal charges).

5Each juror may have a different interpretation during the testimony by witnesses due to her personal
background. The private signal captures such interpretation.
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Jurors’ utility from correct judicial decisions is normalized to u[C|G] = u[A|I] = 0.

Convicting innocent defendants or acquitting guilty defendants incurs utility losses,

u[C|I] = −q and u[A|G] = −(1− q), respectively. We assume that q ∈ [.5, 1).

We term q as the threshold level of reasonable doubt following Feddersen and Pesendor-

fer (1998). Suppose a juror, with all the information available to her, believes that a

defendant is guilty with probability q̃. The expected utility from conviction −q(1− q̃)
is greater than or equal to the expected utility from acquittal −(1− q)q̃ if and only if

q̃ ≥ q. Therefore, jurors use q as the threshold level of belief to vote for conviction.

• A prosecutor:

When punishment h ∈ [0, 1] is delivered to a defendant, the prosecutor’s utility is given

by

v[h|I] = −q′ h, v[h|G] = −(1− q′)(1− h)

where q′ ∈ [0, 1].

The prosecutor loses utility when punishments are delivered to innocent defendants,

or guilty defendants avoid their just punishments. The prosecutor is assumed to be

risk neutral: he is indifferent between delivering h punishment through plea bargaining

and going to trial where the trial convicts the defendant with probability h.

We denote by φG the probability that a guilty defendant pleads guilty, and by φI the

probability that an innocent defendant pleads guilty. These probabilities are strategies for

defendants that will arise in equilibrium; they are not being exogenously imposed. The

jurors have a common posterior belief π ∈ [0, 1] that a defendant is guilty given that the case

comes to a jury trial. Each juror j makes her voting decision: voting for conviction with

probability σjg when her signal is g and with probability σji if the signal is i. We assume that

jurors do not observe the terms of plea offer declined by the defendant.6

Figure 1 summarizes the timing of the model. A prosecutor offers θ in a plea bargain,

and a defendant pleads either guilty or not guilty. If the defendant pleads guilty, the case

terminates with delivering θ punishment to the defendant. If the defendant pleads not guilty,

the case goes to a jury trial. The jury determines whether to convict or acquit.

We find a Perfect Bayesian Equilibrium with two equilibrium refinements: one in jurors’

voting behavior and the other in jurors’ common beliefs.

6In fact, the equilibrium does not change if we assume that jurors observe the terms of declined plea offer.
Given a common posterior belief π, the jurors need not take into account the terms of plea offer in their
voting behavior.
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Figure 1: A criminal court process.
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For jurors’ voting behavior, we consider symmetric equilibrium voting behavior : all jurors

adopt the same strategy. We denote a symmetric strategy profile by (σg, σi) without specify-

ing a particular juror. A symmetric voting behavior is called responsive if the probability for

a juror to vote for conviction with signal g is strictly higher than the probability with signal

i (i.e., σg > σi). We find symmetric voting behavior that gives jurors the highest expected

payoffs. We call this refined equilibrium behavior the most efficient symmetric equilibrium

voting behavior or, more succinctly, the efficient equilibrium voting behavior. Whenever a

responsive symmetric equilibrium exists, the most efficient equilibrium rules out trivial vot-

ing behavior (e.g., voting always for acquittal). Trivial voting behavior forms a symmetric

equilibrium because no juror is pivotal, so every juror is indifferent between voting for con-

viction and voting for acquittal. Clearly, a trivial voting equilibrium is inefficient as jurors

do not use their private information in their voting decisions.7

Jurors’ beliefs also need a refinement when the probability of a defendant going to trial

is zero. We refine jurors’ beliefs that a defendant coming to trial is believed to be innocent.

Such refinement is equivalent to imposing D1 by Cho and Kreps (1987) on the equilibria of

the signaling game, which is induced from our model by assuming that the jurors follow the

efficient equilibrium voting behavior.

In the spirit of backward induction, we first study jurors’ efficient equilibrium voting

behavior, and then equilibrium behaviors in plea bargaining. The following section on jury

trial is a part of the backward induction. The section also serves as a baseline for comparison

as a jury model without plea bargaining.

3 A Jury Trial

The jurors’ have a common belief: conditional on a case coming to trial, the defendant is

guilty with probability π. Note that a guilty defendant has a higher chance of being convicted

because he is more likely to generate guilty signals than an innocent defendant and each juror

is more likely to vote for conviction when her signal is g. Therefore, we assume without loss

of generality that a guilty defendant is more likely to plead guilty (φG ≥ φI) and less likely

to come to trial (π ≤ π0).

Following standard strategic jury models, we assume that a juror makes her voting deci-

sion under the condition that she is pivotal (piv). We denote by P [G|piv, g, π] the posterior

7Other notions of refinement motivated by the trembling hand perfection in Austen-Smith and Fedder-
sen (2005) or weakly undominated strategies in Gerardi and Yariv (2007) are insufficient to get a unique
equilibrium (see Appendix E).
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probability that the defendant turns out to be guilty when a juror receives a guilty signal g,

has a belief π, and is pivotal:

Pr[G|piv, g, π] :=
Pr[piv|G] · p · π

Pr[piv|G] · p · π + Pr[piv|I] · (1− p) · (1− π)
. (2)

Her expected utility from a guilty verdict is −q ·Pr[I|piv, g, π] and the utility from a not

guilty verdict is −(1 − q) · Pr[G|piv, g, π]. Given all the information available to the juror,

she will vote for conviction if

−q · Pr[I|piv, g, π] ≥ −(1− q) · Pr[G|piv, g, π],

or equivalently,

Pr[G|piv, g, π] ≥ q.

That is, the evidence of guilt is enough to exceed the level of reasonable doubt q.

Thus, a necessary condition for a juror who receives a guilty signal to vote for conviction

(or acquittal) is

Pr[G|piv, g, π] ≥ (or ≤) q. (3)

If the inequality holds as equality, the juror may vote for conviction or acquittal with certain

probabilities.

We find an equilibrium voting behavior by explicitly computing Pr[G|piv, g, π]. For now,

assume that Pr[piv|G], Pr[piv|I], and π are all strictly positive. We rearrange Equation (2)

that

Pr[G|piv, g, π] =
1

1 + Pr[piv|I]
Pr[piv|G]

1−p
p

1−π
π

.

Combined with Equation (3), a juror with a guilty signal will vote for conviction (or

acquittal) when
Pr[piv|G]

Pr[piv|I]

p

1− p
π

1− π
≥ (or ≤)

q

1− q
.

The left-hand side is the likelihood ratio of guilty to innocent given that a juror is pivotal,

multiplied by the likelihood ratio inferred from private information g, multiplied by the ratio

of beliefs on the defendant’s type. The right-hand side is the ratio of the two kinds of utility

loses.

Let rG denote the probability that a juror votes for conviction when the defendant is truly
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guilty, and let rI be the same probability when the defendant is instead innocent. That is,

rG := pσg + (1− p)σi and rI := (1− p)σg + pσi.

If a voting rule requires k̂ (1 < k̂ ≤ n) number of conviction votes for a guilty verdict, a

juror is pivotal when k̂−1 other jurors vote for conviction. Thus, when a juror with a guilty

signal votes for conviction (or acquittal), we must have

rk̂−1
G (1− rG)n−k̂

rk̂−1
I (1− rI)n−k̂

p

1− p
π

1− π
≥ (or ≤)

q

1− q
. (4)

We obtain a similar voting criterion for a juror who receives an innocent signal:

rk̂−1
G (1− rG)n−k̂

rk̂−1
I (1− rI)n−k̂

1− p
p

π

1− π
≥ (or ≤)

q

1− q
. (5)

The above expressions are the main restrictions of jurors’ equilibrium behavior.

To understand how jurors’ beliefs affect the equilibrium voting behavior, it is convenient

to introduce a function π̄ defined as

π̄(l ; p, q) :=
1

1−q
q

(
p

1−p

)l
+ 1

, ∀l ∈ N.

The motivation behind the definition of π̄ becomes clear if we rearrange the equation:(
p

1− p

)l
π̄(l)

1− π̄(l)
=

q

1− q
.

The function π̄ maps a number of guilty signals l to a level of belief π, which gives the

minimum amount of evidence for a conviction vote. If a jury consists of a single juror who

receives l number of independent signals, π̄(l) is the threshold level of the juror’s belief such

that the juror votes for conviction if all l signals are guilty.

We state the equilibrium voting behavior in the following proposition.

Proposition 1 (Equilibrium Voting Behavior) If π̄(k̂) < π < π̄(−n+ k̂ − 1), the most

efficient symmetric equilibrium voting behavior is responsive. Otherwise, the most efficient

symmetric equilibrium involves an equilibrium in which no juror votes for conviction (if

π ≤ π̄(k̂)), or all jurors vote for conviction (if π ≥ π̄(−n+ k̂ − 1)).
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When a responsive equilibrium voting behavior exists, Proposition 1 rules out trivial

equilibria where jurors always vote for conviction or always vote for acquittal. In some

situations, such voting behavior is an equilibrium behavior because no juror becomes pivotal.

A juror’s vote never changes the judicial decision, so every juror is indifferent between voting

for conviction and voting for acquittal. Intuitively, if a responsive equilibrium exists, it must

be more efficient than the trivial equilibria because jurors use their signals in voting decisions.

The only exception is under the unanimity rule (k̂ = n) when π = π̄(n). In this situation,

efficient equilibria involve both responsive equilibrium voting behavior and a trivial equilib-

rium behavior where all jurors vote for acquittal. The belief π̄(n) is so low that even with n

guilty signals each juror is indifferent between a guilty and an innocent verdict. Then, the

responsive equilibrium is not necessarily more efficient than the trivial equilibrium of always

voting for acquittal.

We illustrate how to find an equilibrium voting behavior from voting criteria (4) and

(5). Suppose jurors do not always vote for acquittal (0 < rI , rG) and do not always vote for

conviction (rI , rG < 1). Then the left-hand side of (4) is strictly larger than the left-hand

side of (5). Thus, a juror with signal g has a greater probability of voting for conviction

than a juror with signal i: i.e., σg > σi. Three classes of strategies are consistent with such

jury behavior: (0 < σg < 1, σi = 0), (σg = 1, 0 < σi < 1), and (σg = 1, σi = 0).

Given a voting rule requiring k̂, (σg = 1, σi = 0) is not an equilibrium behavior for

π < π̄(2k̂ − n). Suppose that a juror with signal g turns out to be pivotal. That is, k̂ − 1

other jurors vote for conviction and n− k̂ jurors vote for acquittal. Considering that other

jurors act (σg = 1, σi = 0), k̂−1 conviction votes indicate the same number of guilty signals,

and n − k̂ acquittal votes indicate the same number of innocent signals. Since signals are

symmetric (P [g|G] = P [i|I]), being pivotal is then equivalent to observing 2k̂− n− 1 guilty

signals, which results in 2k̂−n guilty signals, including the juror’s own. When π < π̄(2k̂−n),

the 2k̂−n guilty signals provide insufficient evidence of a guilty verdict. Thus, σg = 1 is not

a best response, and (σg = 1, σi = 0) must not be an equilibrium voting behavior.

When a juror with signal g uses a mixed strategy (0 < σg < 1, σi = 0), she must be

indifferent between conviction and acquittal. In such an instance, the voting criterion (4)

holds with an equality, from which we obtain an expression for σg and the consistent range

of π. When a juror with a signal i uses a mixed strategy (σg = 1, 0 < σi < 1), we obtain

σi and the range of π from the equality of voting criterion (5). If jurors with signal g vote

for conviction and with signal i vote for acquittal (σg = 1, σi = 0), the juror with signal g

has enough evidence to vote for conviction, whereas a juror with signal i lacks evidence and
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(b) The unanimity rule (k̂ = 12).

Figure 2: Efficient symmetric voting behavior with n = 12, p = 6
10

, and q = 1
2

thus votes for acquittal. The corresponding inequalities of voting criteria (4) and (5) allow

us to find the range of π consistent with such a strategy.

Figure 2 depicts efficient equilibrium voting behavior under a general super-majority rule

(1 < k̂ < n) and the unanimity rule (k̂ = n). The solid lines represent the probabilities

of voting for conviction with signal g, and the dashed lines represent the probabilities with

signal i. Mostly, we have a unique equilibrium voting behavior, except when π = π̄(k̂) under

the unanimity rule.

We next find equilibrium conviction probabilities PG and PI of a guilty defendant and

an innocent defendant, respectively.

PG :=
n∑
k=k̂

(
n

k

)
rkG (1− rG)n−k , PI :=

n∑
k=k̂

(
n

k

)
rkI (1− rI)n−k . (6)

For each level of belief π, we denote the pair of equilibrium conviction probabilities of

guilty defendants or innocent defendants by {(PG, PI)|π}. We also define correspondences

of the conviction probabilities by

fG(π) := {P ′G| ∃P ′I , (P ′G, P
′
I) ∈ {(PG, PI)| π}} ,

fI(π) := {P ′I | ∃P ′G, (P ′G, P
′
I) ∈ {(PG, PI)| π}} .

Note that fG(.) and fI(.) are almost always single-valued. As we discussed after Proposition

1, efficient equilibrium voting behavior is almost always unique. The only exception is when

π = π̄(k̂) under the unanimity rule.
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Figure 3: Conviction probabilities with n = 12, p = 6
10

, and q = 1
2

Proposition 2 (Properties of the Efficient Equilibrium Voting Behavior) 1. Convicting

the guilty is no less likely than convicting the innocent: PG ≥ PI for all π.

2. Efficient equilibrium voting behavior (σg, σi) is non-decreasing in π.

3. Conviction probabilities are non-decreasing in π : for every π and π′ such that π < π′,

fG(π) ≤ fG(π′) and fI(π) ≤ fI(π
′).8

The above properties are derived from voting criteria (4) and (5). First, a juror with

a guilty signal is more likely to vote for conviction (σg ≥ σi). Since a guilty defendant is

more likely to send guilty signals, jurors are more likely to vote for conviction (rG ≥ rI)

and a guilty defendant has a higher chance of being convicted (PG ≥ PI). Second, given

other jurors’ voting behavior rG and rI , the value of the left-hand sides of both criteria

are increasing in belief π. Thus, jurors with a higher π have higher incentives to vote for

conviction. Last, the conviction probabilities are strictly increasing functions of σg and σi,

which are in turn increasing correspondences of π. Therefore, the conviction probabilities

fG(·) and fI(·) are increasing correspondences of π.

Figure 3 depicts the conviction probabilities induced by the efficient equilibrium voting

behavior. The solid lines show the conviction probabilities of a guilty defendant; the dashed

lines show the conviction probabilities of an innocent defendant.

8For sets A and B in R, we denote by A ≤ B if a ≤ b for every a ∈ A and b ∈ B.
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4 Plea Bargaining

A prosecutor offers a defendant an opportunity to plead guilty and undergo the corresponding

penalty θ ∈ [0, 1]. The defendant compares θ with the conviction probability at trial induced

by the efficient equilibrium voting behavior. A guilty defendant pleads guilty if θ ≤ PG, and

an innocent defendant pleads guilty if θ ≤ PI .
9

Recall that π denotes the jurors’ common belief of the defendant’s type conditional on a

case proceeding to trial. When a case reaches a jury trial with a positive probability (φG < 1

or φI < 1), jurors update their common belief π by

π =
π0(1− φG)

π0(1− φG) + (1− π0)(1− φI)
. (7)

If a defendant always pleads guilty (φG = φI = 1), we assume that the jurors have belief

π = 0.10

The relationship between the pleading decisions (φG and φI) and the conviction proba-

bilities (PG and PI) captures the main interaction between plea bargaining and jury trial.

The pleading decisions lead jurors to update their belief about the defendants pool (π). This

belief is taken as part of the evidence of guilt in the jury’s voting behavior {(PG, PI)|π}.
Conversely, the defendant takes into account the conviction probabilities in his pleading de-

cision. Equilibrium behavior ensures that these interactions must be consistent with each

other.

The following proposition summarizes the equilibrium restrictions.

Proposition 3 (Pleading Decisions and Voting Behavior) Suppose the jury follows the

efficient equilibrium voting behavior. For each prosecutor’s offer θ, one, and only one, of the

two following classes holds.

1. Some guilty pleas: Guilty defendants are indifferent between pleading guilty and

undergoing a jury trial (θ = PG); innocent defendants prefer to plead not guilty (θ ≥
9We assume that defendants correctly anticipate conviction probabilities. In practice, participants in plea

bargaining often foresee the outcomes of jury trials, so previous trial outcomes significantly influence the
participants’ bargaining power (see, e.g., Bibas (2004) and Stuntz (2004)). A novice defendant also gets
advice from experienced defense attorneys.

10This refinement on jurors’ common belief is equivalent to applying D1 by Cho and Kreps (1987) to the
signaling game equilibrium induced by assuming that jurors follow the efficiency equilibrium voting behavior.
Since a guilty defendant is more likely to be convicted at trial, if a defendant deviates from φG = φI = 1, he
is more likely to be innocent. In such a case, D1 refines jurors’ common belief π to be equal to 0.
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PI). θ = PG ∈ fG(π) for every equilibrium belief π.11

2. No guilty plea: PG, and necessarily PI , are no more than θ. All defendants plead

not guilty (φG = φI = 0). Thus, π = π0 and PG ∈ fG(π0).

In most cases, guilty defendants are indifferent between pleading guilty and pleading not

guilty (θ = PG); innocent defendants prefer going to trial (PI ≤ θ). To see why this occurs,

suppose we have θ < PG. Guilty defendants will plead guilty, and depending on θ and PI ,

only innocent defendants may go to trial. Then jurors believe all defendants in trials are

innocent, and they will vote for acquittal (PG = 0), contradicting θ < PG. Similarly, θ > PG

can hold in an equilibrium only when the prosecutor offers a very high level of θ. Then all

defendants will go to trial, but the induced conviction probabilities (PG and PI) are still

lower than θ.

The prosecutor wants to offer θ, which maximizes his expected equilibrium payoff, given

the equilibrium restriction from Proposition 3. The prosecutor’s problem is summarized by

the following optimization problem:

max
θ∈[0,1]

−π0(1− q′)
(
φG(1− θ) + (1− φG)(1− PG)

)
− (1− π0)q′

(
φIθ + (1− φI)PI

)
(8)

subject to

(a.1) φG ∈ arg minφ′∈[0,1] φ
′θ + (1− φ′)PG,

(a.2) φI ∈ arg minφ′∈[0,1] φ
′θ + (1− φ′)PI ,

(b) π =

{
0 if φG = φI = 1

π0(1−φG)
π0(1−φG)+(1−π0)(1−φI)

otherwise,

(c) (PG, PI) ∈ {(P ′G, P ′I)|π}.

The prosecutor’s utility is decreased by (1 − q′) when a guilty defendant goes without

full punishment. Such a case is either the result of a guilty plea with probability φG and

undelivered punishment (1− θ), or of acquittal in a jury trial with probability (1− φG)(1−
PG) and undelivered punishment 1. If an innocent defendant is mistakenly punished, the

prosecutor’s utility decreases with q′. The mistake is either the result of a guilty plea with

probability φI and punishment θ, or of conviction in a jury trial with probability (1−φI)PI
and punishment 1. The equilibrium behavior of the defendant and the jurors restricts the

11The equilibrium belief π may not be unique. For instance, suppose that θ is equal to the conviction
probability of a guilty defendant under (σg = 1, σi = 0). Any π inducing σg = 1 and σi = 0 as the equilibrium
voting behavior can be an equilibrium belief. Then, fG(π) contains θ = PG and leads to the same level of
equilibrium punishment.
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prosecutor’s optimization: a guilty or innocent defendant minimizes his expected punishment

(a.1 and a.2), jurors rationally update their belief π (b), and jurors will follow the efficient

equilibrium voting behavior (c).

The following proposition presents the prosecutor’s optimal behavior and the consequent

jurors’ voting behavior. In the proposition, some guilty pleas and no guilty plea refer to the

two classes of equilibrium behavior in Proposition 3.

Proposition 4 (Equilibrium Outcomes of Plea Bargaining and the Jury Trial) 1.

If q′ > q, the prosecutor induces some guilty pleas. Induced jury behavior resembles

the behavior in the jury model without plea bargaining. However, jurors act as if they

have the prosecutor’s preferences q′.

2. If q′ ≤ q, the prosecutor induces no guilty plea. The jury behavior is the same as the

behavior in the jury model without plea bargaining.

To see the intuition behind Proposition 3, suppose the prosecutor sets θ such that 0 <

θ ≤ sup fG(π0), and thus θ = PG > 0.12 Since the conviction probability of a guilty defendant

is strictly between 0 and 1, the equilibrium voting behavior is responsive. Thus, we have

PG > PI , which implies that an innocent defendant always goes to trial (φI = 0). Using

these equilibrium restrictions, we can simplify the prosecutor’s objective function as

− π0(1− q′)(1− PG)− (1− π0)q′PI . (9)

We revisit the jurors’ voting criteria and see how the prosecutor should influence the

jurors’ belief π. We modify (4) and (5) and obtain

Pr[ piv |G]

Pr[ piv |I]

p

1− p
π0

1− π0

≥ (or ≤)
q

1− q
1− π
π

π0

1− π0

if the signal is g,

and

Pr[ piv |G]

Pr[ piv |I]

1− p
p

π0

1− π0

≥ (or ≤)
q

1− q
1− π
π

π0

1− π0

if the signal is i.

That is, the jury behavior with belief π and the ratio of utility loses q
1−q is equal to

the jury behavior with belief π0 and the ratio of utility loses equal to q
1−q

1−π
π

π0
1−π0 . Thus,

the prosecutor’s effort to influence the jurors’ belief has the same effect on jury behavior as

12The condition θ ≤ sup fG(π0) is necessary for θ = PG. If the prosecutor sets θ very high, all defendants
proceed to jury trials, but PG may still remain lower than θ.
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Figure 4: Optimal offer of guilty plea punishment: n = 12, p = 6
10

, q = 1
2
, and π0 = 1

2
.

changing the level of the jurors’ reasonable doubt, while keeping the jurors’ belief equal to

the prosecutor’s initial belief π0.

The prosecutor wants the jurors’ induced ratio of utility loses ( q
1−q

1−π
π

π0
1−π0 ) to perfectly

coincide with the prosecutor’s ratio of utility loses ( q′

1−q′ ). Nevertheless, plea bargaining

induces π ≤ π0, so the prosecutor can bias the jurors’ reasonable doubt only against voting

for conviction. If the jurors, rather than the prosecutor, already care more about punishing

innocent defendants (q > q′), the prosecutor has no incentive to use plea bargaining for the

purpose of influencing jury behavior.

Figure 4 illustrates the prosecutor’s optimal offer of a guilty plea punishment. As Propo-

sition 4 states, the optimal offer is divided into two classes. When the prosecutor is less

concerned than jurors about punishing innocent defendants (q′ ≤ q), the prosecutor offers a

high level of punishment and induces a no guilty plea. If otherwise, the prosecutor offers a

lower level of punishment and induces some guilty pleas. The more lenient punishment for

a guilty plea leads to a higher proportion of guilty defendants pleading guilty. Then, jurors

have a lower level of belief π, which eventually results in a lower chance of convicting an

innocent defendant.

5 Comparison of Voting Rules

Our unified model of plea bargaining and jury trial can extend the scope of strategic jury

models to the entire court process. Previously, applications of jury models were limited to

jury trials only, which occurred in fewer than 5% of criminal cases in the United States. By
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incorporating various jury models into our unified model, we can extend the insights from

these models to the entire court process, including plea bargaining. We demonstrate this

concept by considering Feddersen and Pesendorfer (1998).

Feddersen and Pesendorfer demonstrate the inferiority of the unanimity rule. As the

number of jurors increases, the chance of convicting an innocent defendant and the chance

of acquitting a guilty defendant do not converge to zero, whereas both chances converge to

zero under any general super-majority rule. A reasonably sized jury would make judicial

mistakes with a significant chance under the unanimity rule, but the chances are minimal

under any super-majority rule.

The above observation holds in our unified model. Using the unanimity rule in a jury

trial leads to inferior outcomes (i.e., punishment by guilty pleas and conviction probabilities)

of the entire court process to those from any general super-majority rule.

Corollary 5 (Comparing voting rules)

1. If a jury uses the unanimity rule, the expected punishment of guilty defendants con-

verges to 1−
(

(1−q̃)(1−p)
q̃p

) 1−p
2p−1

as n→∞, where q̃ = max{q, q′}; for innocent defendants,

it converges to
(

(1−q̃)(1−p)
q̃p

) p
2p−1

.

2. If the jury uses a general super-majority rule, the expected punishment for guilty de-

fendants converges to one; the expected punishment for innocent defendants converges

to zero.

The inferiority of the unanimity rule remains after the addition of plea bargaining. This

is because expected punishments are ultimately determined by conviction probabilities in a

jury trial (Proposition 3), and the jury’s behavior in our model is similar to the behavior in

the jury model without plea bargaining (Proposition 4).

6 Conclusion

We highlight that the criminal court process implements the preferences of the party –

prosecutor or jury – who is most concerned about wrongful conviction. The prosecutor

chooses terms of a guilty plea, and the defendant in turn chooses whether to go to jury

trial. Thus, if the prosecutor is more concerned about wrongful conviction than jurors,

he can influence jury behavior through jurors’ common belief about a defendant’s guilt or
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innocence at trials. Given our unified model of plea bargaining and jury trial, we also show

that insights from previous jury models can be applied to the entire court process beyond

trials.

Adding trial costs does not change the qualitative nature of the main results. Suppose

the prosecutor can bring only a fraction of cases to trial, and defendants have heterogeneous

trial costs. If defendants have relatively high trial costs, most innocent defendants, as well

as most guilty defendants, will plead guilty. The large proportion of innocent defendants

who take plea bargain offers is a concern of the prosecutor. But it is not a concern of the

jurors because a jury makes a decision only for a single trial. Even if the prosecutor is

less concerned about false conviction than jurors, the concern about mistakenly delivered

punishment through plea bargaining may become so large that the prosecutor will propose

play bargain offers more lenient than necessary to save trial costs. In this case, jurors are

induced to vote more for acquittal.

Appendix

A Proof of Proposition 1

We first find all symmetric equilibrium voting behaviors (Appendix A.1), and then take the

most efficient symmetric voting behavior (Appendix A.2).

A.1 Finding All Symmetric Equilibrium Voting Behaviors.

A.1.1 Non-responsive equilibrium voting behavior

We first consider the unanimity rule (k̂ = n). When all jurors always vote for conviction

(σg = 1, σi = 1), being pivotal gives a single juror no information about other jurors private

signals. Thus, the juror makes a voting decision only based on her own signal. When her

signal is i, she votes for conviction (or acquittal) when

1− p
p

π

1− π
≥ (or ≤)

q

1− q
,

or equivalently

π ≥ (or ≤) π̄(1).

In particular, always voting for conviction is an equilibrium behavior when π ≥ π̄(1).
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Now, consider general super-majority rules (1 < k̂ < n). Always voting for conviction

(σg = 1, σi = 1) is an equilibrium voting behavior. When all jurors always vote for conviction,

a single juror is never pivotal. Thus, no juror has an incentive to deviate from (σg = 1, σi =

1).

Similarly, always voting for acquittal (σg = 0, σi = 0) is an equilibrium voting behavior

under both general super-majority rules and the unanimity rule.

A.1.2 Responsive equilibrium voting behavior

In a responsive equilibrium voting behavior (σi < σg), it must be that 0 < σg and σi < 1. So,

the jury does not always deliver a guilty (or an innocent) verdict (0 < rG, rI < 1), and voting

criteria (4) and (5) are well defined. There are three cases of responsive voting behavior:

(0 < σg < 1, σi = 0), (σg = 1, σi = 0), and (σg = 1, 0 < σi < 1). For each of these cases, we

identify a range of consistent beliefs π.

Case 1: (0 < σg < 1, σi = 0) A juror with signal g is indifferent between voting for

conviction and voting for acquittal:

rk̂−1
G (1− rG)n−k̂

rk̂−1
I (1− rI)n−k̂

p

1− p
π

1− π
=

q

1− q
.

By substituting in rG = pσg and rI = (1− p)σg, we obtain

(
1− pσg

1− (1− p)σg

)n−k̂(
p

1− p

)k̂
π

1− π
=

q

1− q
. (10)

Under the unanimity rule (k̂ = n), the first term on the left-hand side is equal to 1. The

equality holds when π = π̄(n), in which case any (0 < σg < 1, σi = 0) is an equilibrium

voting behavior.

When the Equation (10) holds, σg = 0 implies π = π̄(k̂), and σg = 1 implies π =

π̄(2k̂ − n). Moreover, 1−pσg
1−(1−p)σg is strictly decreasing in σg under any general super-majority

rule (1 < k̂ < n). Thus, if there exists a responsive equilibrium behavior with 0 < σg < 1,

the belief π must be

π̄(k̂) < π < π̄(2k̂ − n).

For each π satisfying the above condition, we find a unique equilibrium voting behavior

(σg, σi = 0) through algebraic manipulation of (10):
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σg(π) =
ψ1 − 1

(1− p)ψ1 − p
where ψ1 =

(
1− p
p

) k̂

n−k̂
(

q

1− q
1− π
π

) 1

n−k̂

. (11)

Case 2: (σg = 1, σi = 0) A juror with signal g prefers to vote for conviction, whereas a

juror with signal i prefers to vote for acquittal. We substitute in rG = p and rI = 1 − p to

voting criteria (4) and (5) and obtain

(
p

1− p

)2(k̂−1)−n

≤ q

1− q
1− π
π
≤
(

p

1− p

)2k̂−n

. (12)

The above inequalities are equivalent to

π̄(2k̂ − n) ≤ π ≤ π̄(2(k̂ − 1)− n).

That is, (σg = 1, σi = 0) is an equilibrium voting behavior when π is between π̄(2k̂− n) and

π̄(2(k̂ − 1)− n).

Case 3: (σg = 1, 0 < σi < 1) A juror with signal i is indifferent between voting for

conviction and voting for acquittal:

rk̂−1
G (1− rG)n−k̂

rk̂−1
I (1− rI)n−k̂

1− p
p

π

1− π
=

q

1− q
.

We substitute in rG = p+ (1− p)σi and rI = (1− p) + pσi and obtain

(
p+ (1− p)σi
(1− p) + pσi

)k̂−1(
1− p
p

)n−k̂+1
1− π
π

=
q

1− q
. (13)

When the Equation (13) holds, σi = 0 implies π̄(2(k̂ − 1) − n) = π, and σi = 1 implies

π = π̄(−n+ k̂−1). Moreover, p+(1−p)σi
(1−p)+pσi is strictly decreasing in σi since k̂ > 1. Thus, if there

exists a responsive equilibrium voting behavior with σg = 1 and 0 < σi < 1, π must satisfy

π̄(2(k̂ − 1)− n) < π < π̄(−n+ k̂ − 1).

For each π satisfying the above inequalities, we find a unique equilibrium voting behavior
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General super-majority rules (1 < k̂ < n) The unanimity rule (k̂ = n)
Non-responsive voting

∀ π ∈ [0, π0] (σg = σi = 1) π ≥ ¯π(1) (σg = σi = 1)
π ∈ [0, π0] (σg = σi = 0) ∀ π ∈ [0, π0] (σg = σi = 0)

Responsive voting

π̄(k̂) < π < π̄(2k̂ − n) (0 < σg < 1, σi = 0) π = π̄(n) (0 < σg < 1, σi = 0)

π̄(2k̂ − n) ≤ π ≤ π̄(2(k̂ − 1)− n) (σg = 1, σi = 0) π̄(n) ≤ π ≤ π̄(n− 2) (σg = 1, σi = 0)

π̄(2(k̂ − 1)− n) < π < π̄(−n+ k̂ − 1) (σg = 1, 0 < σi < 1) π̄(2n− 2) < π < π̄(−1) (σg = 1, 0 < σi < 1)

Table 1: Symmetric voting equilibrium behavior in jury trial.
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(a) A super-majority rule (k̂ = 8).
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(b) The unanimity rule (k̂ = 12).

Figure 5: Symmetric equilibrium voting behavior with n = 12, p = 6
10

, and q = 6
10

(σg = 1, σi) through algebraic manipulation of (13):

σi(π) =
p− ψ2(1− p)
pψ2 − (1− p)

where ψ2 =

(
p

1− p

)n−k̂+1

k̂−1
(

q

1− q
1− π
π

) 1

k̂−1

. (14)

Table 1 summarizes all equilibrium voting behaviors. Figure 5 illustrates the equilibria

with n = 12, p = 6
10

, and q = 6
10

under voting rules k̂ = 8 and k̂ = 12. We use solid lines

for σg and dashed lines for σi. The pair of σg and σi sharing the same thickness in Figure 5

forms a strategy profile.

A.2 Finding an Efficient Equilibrium Voting Behavior

When there is no responsive equilibrium voting behavior (π ≤ π̄(k̂)), one of the non-

responsive equilibria is an efficient equilibrium voting behavior.

Note that jurors’ utility is

−(1− q) · π · (1− PG)− q · (1− π) · PI .
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Thus, the expected utility from (σg = σi = 0) is higher than the utility from (σg = σi = 1)

if and only if q (1− π) ≥ (1− q)π: i.e., π ≤ q.

If responsive equilibrium voting behavior exists, it is more efficient than both non-

responsive voting behaviors. We illustrate this result by showing that the payoff from re-

sponsive voting is higher than the payoff from (σg = 0, σi = 0). We omit the comparison

between the payoff from responsive voting and the payoff from (σg = 1, σi = 1).

Note that responsive voting is more efficient than (σg = 0, σi = 0) if and only if the

conviction probabilities (PG, PI) of responsive voting behavior satisfy

−(1− q) π (1− PG)− q (1− π) PI > −(1− q) π.

We rewrite the inequality and obtain

PG
PI

=

∑n
j=k̂

(
n
j

)
rjG(1− rG)n−j∑n

j=k̂

(
n
j

)
rjI(1− rI)n−j

> (or ≥)
q

1− q
1− π
π

. (15)

When the above inequality holds as a strict inequality, the responsive equilibrium voting

behavior is strictly more efficient than (σg = 0, σi = 0). If the inequality holds as an

equality, the two equilibrium voting behaviors are equally efficient.

We proceed separately with general super-majority rules and the unanimity rule.

A.2.1 General super-majority rules (1 < k̂ < n)

First, k′ > k and rG > rI > 0 imply

rk
′
G (1− rG)n−k

′

rk
′
I (1− rI)n−k′

>
rkG(1− rG)n−k

rkI (1− rI)n−k
. (16)

And x, x′ > 0 and y, y′ > 0 imply

x′

y′
>
x

y
implies

x+ x′

y + y′
>
x

y
. (17)

Sequentially applying (16) for (k̂ + 1, k̂), . . . , (n, k̂), and using (17), we obtain∑n
k=k̂

(
n
k

)
rkG(1− rG)n−k∑n

k=k̂

(
n
k

)
rkI (1− rI)n−k

>
rk̂G(1− rG)n−k̂

rk̂I (1− rI)n−k̂
.
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To prove that (15) holds as a strict inequality, it is enough to show that

rk̂G(1− rG)n−k̂

rk̂I (1− rI)n−k̂
≥ q

1− q
1− π
π

. (18)

We proceed with each of three cases of responsive equilibrium voting behavior.

Case 1 : (0 < σg < 1, σi = 0) where π̄(k̂) < π < π̄(2k̂ − n).

Since rG = pσg and rI = (1− p)σg, the left-hand side of (18) is

rk̂G(1− rG)n−k̂

rk̂I (1− rI)n−k̂
=

(
1− pσg

1− (1− p)σg

)n−k̂(
p

1− p

)k̂
.

The equilibrium restriction (10) implies that the right-hand side of the above equation

is equal to the right-hand side of (18). Thus (18) holds as an equality.

Case 2 : (σg = 1, σi = 0) where π̄(2k̂ − n) ≤ π ≤ π̄(2(k̂ − 1)− n).

Since rG = p and rI = 1− p, the left-hand side of (18) is

rk̂G(1− rG)n−k̂

rk̂I (1− rI)n−k̂
=

(
p

1− p

)2k̂−n

.

Equation (12) implies that Equation (18) must be true.

Case 3 : (σg = 1, 0 < σi < 1) where π̄(2(k̂ − 1)− n) < π ≤ π̄(−n+ k̂ − 1).

From (13), we have

(
p+ (1− p)σi
(1− p) + pσi

)k̂−1(
1− p
p

)n−k̂+1

=
q

1− q
1− π
π

.

By substituting in rG = p+ (1− p)σi and rI = (1− p) + p σi, we obtain

rk̂G(1− rG)n−k̂

rk̂I (1− rI)n−k̂
=

(
p+ (1− p)σi
(1− p) + pσi

)k̂(
1− p
p

)n−k̂
≥
(
p+ (1− p)σi
(1− p) + pσi

)k̂−1(
1− p
p

)n−k̂+1

.

The above equality and inequality imply (18).
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A.2.2 The unanimity rule (k̂ = n)

If the voting rule follows the unanimity rule, (15) becomes

PG
PI

=

(
rG
rI

)n
> (or ≥)

q

1− q
1− π
π

. (19)

We again proceed to show (19) for each of three cases of responsive equilibrium voting

behavior.

Case 1: (0 < σg < 1, σi = 0) where π = π̄(n).

By substituting in rG = pσg and rI = (1− p)σg, the left-hand side of (19) becomes(
rG
rI

)n
=

(
p

1− p

)n
.

Since π = π̄(n), (19) holds as an equality. Therefore, both the responsive equilibrium

voting behavior and (σg = 0, σi = 0) are equally efficient.

Case 2: (σg = 1, σi = 0) where π̄(2k̂ − n) ≤ π ≤ π̄(2(k̂ − 1)− n).

Since rG = p and rI = 1− p, the left-hand side of (19) becomes(
rG
rI

)n
=

(
p

1− p

)n
.

When π = π̄(2k̂− n) = π̄(n), (19) holds as an equality. If π̄(n) < π ≤ π̄(2(k̂− 1)− n),

(19) holds as a strict inequality. Thus, when π = π̄(n), both (σg = 1, σi = 0) and

(σg = 0, σi = 0) are equally efficient; when π̄(n) < π ≤ π̄(2(k̂ − 1) − n), responsive

voting (σg = 1, σi = 0) is more efficient than non-responsive voting (σg = σi = 0).

Case 3: (σg = 1, 0 < σi < 1) where π̄(2(k̂ − 1)− n) < π < π̄(−n+ k̂ − 1).

By substituting in rG = p+ (1− p)σi, rI = (1− p) + p σi, we obtain(
rG
rI

)n
=

(
p+ (1− p)σi
(1− p) + pσi

)n
>

(
p+ (1− p)σi
(1− p) + pσi

)n−1
p

1− p
=

q

1− q
1− π
π

.

The last equation is from the voting criterion (13). Responsive voting is more efficient

than non-responsive voting (σg = σi = 0).
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B Proof of Proposition 2.

Let (σg, σi) be the efficient equilibrium voting behavior, and rG = pσg + (1 − p)σi and

rI = (1− p)σg + pσi. The conviction probabilities are determined by

PG =
n∑
k=k̂

(
n

k

)
rkG(1− rG)n−k and PI =

n∑
k=k̂

(
n

k

)
rkI (1− rI)n−k.

Item 1: When the efficient equilibrium voting behavior is non-responsive, PG ≥ PI clearly

holds. If the efficient equilibrium voting behavior is responsive, PG > PI holds since

a guilty defendant is more likely to send a guilty signal, and a juror is more likely to

vote for conviction with a guilty signal (σg > σi).

Item 2: We observed that σg and σi are non-decreasing in π over (π̄(k̂), π̄(2k̂ − n)) and

(π̄(2k̂ − n), π̄(−n + k̂ − 1)], and otherwise constant in π. Thus, σg and σi are non-

decreasing in π over [0, π0].

Item 3: The conviction probabilities are strictly increasing in σg and σi, and σg and σi are

non-decreasing in π. Thus, fG(π) and fI(π) are non-decreasing in π.

C Proof of Proposition 3

We first show that fG(π) is upper hemicontinuous in π with non-empty convex values. fG

is continuous in σg and σi and the efficient equilibrium behaviors (σg and σi) are upper

hemicontinuous in π. Therefore, fG(π) is upper hemicontinuous in π. In addition, fG(π)

is convex-valued for all π. The efficient equilibrium behavior σg, σi) is unique for almost

every π, and thus fG(π) is convex-valued. The only exception is when π = π̄(n) and the

rule is unanimous. In that case, the efficient equilibrium voting behavior is any pair (σg, σi)

satisfying σi = 0 and 0 ≤ σg ≤ 1.
∑n

k′=k̂

(
n
k′

)
rk
′
G (1−rG)n−k

′
is continuous in (σg, σi), so fG(π)

is convex-valued even if the efficient equilibrium behavior is not unique.

To prove the first item in Proposition 3, suppose θ ≤ PG. It is necessary that θ ∈ [0, θ̄]

where θ̄ = sup fG(π0). If θ < PG, every guilty defendant pleads guilty, and only innocent

defendants may or may not go to trial. In such a case, jurors believe that all defendants

in trials are innocent (π = 0), which leads the conviction probability to equal zero. This

contradicts θ < PG, and it must be that θ = PG. Since fG(π) is upper hemicontinuous in

π with non-empty convex values, there exists a π such that θ ∈ fG(π) (Intermediate Value
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Theorem).

If we instead have θ > PG, no defendant pleads guilty, and the jurors believe π = π0.

The conviction probabilities (PG, PI) must be in {(P ′G, P ′I)|π0}, which is the case stated in

the second item in Proposition 3.

D Proof of Proposition 4

D.1 Simplifying the Prosecutor’s Problem

The prosecutor’s problem is

max
θ∈[0,1]

−π0(1− q′)
(
φG(1− θ) + (1− φG)(1− PG)

)
− (1− π0)q′

(
φIθ + (1− φI)PI

)
(20)

subject to

(a.1) φG ∈ arg minφ′∈[0,1] φ
′θ + (1− φ′)PG

(a.2) φI ∈ arg minφ′∈[0,1] φ
′θ + (1− φ′)PI

(b) π =

{
0 if φG = φI = 1

π0(1−φG)
π0(1−φG)+(1−π0)(1−φI)

otherwise.

(c) (PG, PI) ∈ {(P ′C , P ′I)|π}.

We simplify the prosecutor’s problem using Proposition 3.

It is without loss of generality to assume that θ ∈ [0, θ̄] because the prosecutor can obtain

any utility from offering θ > θ̄ by offering θ = θ̄. If θ > θ̄, a defendant always pleads not

guilty and anticipates conviction probabilities (PG, PI) ∈ {(P ′G, P ′I)|π0}. As the prosecutor

sets θ = θ̄, the prosecutor and a guilty defendant are indifferent between pleading guilty and

pleading not guilty. The punishment for a guilty plea is equal to the conviction probability,

which is equal to the expected value of punishment from going to a jury trial.

If the prosecutor offers θ ∈ [0, θ̄], the prosecutor can assume that φI = 1. When θ ∈ [0, θ̄],

we have θ = PG ≥ PI (Proposition 3). In general, we have θ = PG > PI , so an innocent

defendant will not plead guilty (φI = 1). If θ = PG = PI = 0, any pleading decision,

including the case φI = 1, incurs the same expected utility −π0(1− q′) for the prosecutor.
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By applying the above observations, we simplify the prosecutor’s problem as

max
θ∈[0,θ̄]

−π0(1− q′)(1− θ)− (1− π0)q′PI

subject to

(a) φG ∈ [0, 1]

(b) π =

{
0 if φG = 1

π0(1−φG)
π0(1−φG)+(1−π0)

otherwise.

(c) (θ, PI) ∈ {(P ′G, P ′I)|π}.

We simplify the prosecutor’s problem even further.

Define P̃I : [0, θ̄]→ [0, 1] as follows:

P̃I(θ) = pI , where ∃ π, (θ, pI) ∈ {(P ′G, P ′I)|π}.

The function P̃I is well-defined: the value of P̃I(θ) exists and is unique for every θ ∈ [0, θ̄].

Let p̂G be the conviction probability of a guilty defendant when jurors vote by following their

own signals (σg = 1, σi = 0). Consider four cases: (1) θ = 0, (2) θ ∈ (0, p̂G), (3) θ = p̂G, and

(4) θ ∈ (p̂G, θ̄]. If θ = 0, then P̃I(θ) must be 0. If θ = p̂G, then P̃I(θ) has a unique value that

is derived by the voting strategy (σg = 1, σi = 0).

For other cases, P̃I(θ) is determined by

PG =
n∑
k=k̂

(
n

k

)
rkG
(
1− rG

)n−k
, PI =

n∑
k=k̂

(
n

k

)
rkI
(
1− rI

)n−k
where rG = pσg + (1− p)σi and rI = (1− p)σg + pσi.

When θ ∈ (0, p̂G), we have σi = 0, and both PG and PI are strictly increasing in σg.

For any θ ∈ (0, p̂G), there exists a unique σg inducing PG = θ because PG is continuous in

rG, which is continuous in σg. The σg combined with σi = 0 gives a unique pI such that

(θ, pI) ∈ {(P ′G, P ′I)|π}. A similar procedure applies when θ ∈ (p̂G, θ̄].

We also verify that P̃I is strictly increasing and continuous in θ on [0, θ̄], and differentiable

on (0, p̂G) and (p̂G, θ̄). By using P̃I(θ), we simplify the prosecutor’s problem as

max
θ∈[0,θ̄]

U(θ) := −π0(1− q′)(1− θ)− (1− π0)q′P̃I(θ). (21)

In the next subsection, we show that the objective function U(θ) is strictly concave in θ.

So, the first-order conditions are necessary and sufficient to characterize the maximizer θ∗.
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We later investigate the first-order conditions to prove Proposition 4.

D.2 U(θ) is strictly concave in θ.

The objective function U(θ) is continuous in θ because P̃I is continuous. Moreover, U(θ) is

differentiable with respect to θ on (0, p̂G) and (p̂G, θ̄) because P̃I is differentiable on (0, p̂G)

and (p̂G, θ̄), and U(θ) is a linear combination of θ and P̃I .

We lastly show that U(θ) is concave on [0, θ̄]. Since U(θ) is a linear combination of θ

and P̃I , it is enough to prove that P̃I is concave on [0, θ]. In particular, we show that the

derivative of P̃I is decreasing on (0, p̂G) and (p̂G, θ̄), and the left derivative at θ = p̂G is

greater than the right derivative.

If θ ∈ (0, p̂G), PG and PI are differentiable with respect to σg:

∂PG
∂σg

=
∂

∂σg

n∑
k=k̂

(
n

k

)
(rG)k(1− rG)n−k

=
n−1∑
k=k̂

(
n!

k!(n− k)!
krk−1

G (1− rG)n−kr′G

− n!

k!(n− k − 1)!
rkG(n− k)(1− rG)n−k−1r′G

)
+ nrn−1

G r′G

= n r′G

(
n− 1

k̂ − 1

)
rk̂−1
G (1− rG)n−k̂. (22)

Similarly,
∂PI
∂σg

= n r′I

(
n− 1

k̂ − 1

)
rk̂−1
I (1− rI)n−k̂. (23)

Therefore,

∂P̃I(θ)

∂θ
=
∂PI/∂σg
∂PG/∂σg

=
r′I r

k̂−1
I (1− rI)n−k̂

r′G r
k̂−1
G (1− rG)n−k̂

. (24)

Since rG = pσg and rI = (1− p)σg, (24) becomes

∂P̃I(θ)

∂θ
=

(
1− p
p

)k̂(
1− (1− p)σg

1− pσg

)n−k̂
. (25)

Note that σg is increasing in θ ∈ (0, p̂G). Thus, the above derivative is strictly decreasing

in θ ∈ (0, p̂G). That is, ∂P̃I(θ)
∂θ

is decreasing in θ ∈ (0, p̂G), so P̃I(θ) is strictly concave in

(0, p̂G).
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If θ ∈ (p̂G, θ̄), σg = 1 and σi varies. Similar to (22) and (23), we obtain

∂P̃I(θ)

∂θ
=
∂PI/∂σi
∂PG/∂σi

=
r′I r

k̂−1
I (1− rI)n−k̂

r′G r
k̂−1
G (1− rG)n−k̂

. (26)

By substituting in rG = p+ (1− p)σi and rI = (1− p) + pσi, we obtain

∂P̃I(θ)

∂θ
=

(
(1− p) + pσi
p+ (1− p)σi

)k̂−1(
p

1− p

)n−k̂+1

. (27)

Note that σi is increasing in θ ∈ (p̂G, θ̄). The above derivative is strictly decreasing in

θ ∈ (p̂G, θ̄). Thus, P̃I(θ) is strictly concave in (p̂G, θ̄).

Last, the left derivative of P̃I is greater than the right derivative at θ = p̂G because the

limit of (25) as σg goes to 1 is greater than the limit of (27) as σi goes to 0. This completes

the proof that P̃I is strictly concave in θ ∈ [0, θ̄].

D.3 First-Order Conditions

The prosecutor’s objective function is strictly concave in θ. Then first-order conditions are

necessary and sufficient for characterizing the optimizer θ∗. We prove Proposition 4 by

investigating first-order conditions.

D.3.1 Interior solutions

• (0 < θ∗ < p̂G): Note that the first-order condition ∂U(θ)
∂θ

= 0 at θ = θ∗ implies that

(
p

1− p

)k̂(
1− pσg

1− (1− p)σg

)n−k̂
=

q′

1− q′
1− π0

π0

.

A juror with signal g uses a mixed strategy in the efficient equilibrium voting behavior

induced by θ∗. So, Equation (10) holds, which implies

q

1− q
1− π
π

=
q′

1− q′
1− π0

π0

.

• (p̂G < θ∗ < θ̄) : The first-order condition (21) becomes

(
p+ (1− p)σi
(1− p) + pσi

)k̂−1(
1− p
p

)n−k̂+1

=
q′

1− q′
1− π0

π0

.
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A juror with signal i uses a mixed strategy in the efficient equilibrium voting behavior

induced by θ∗. Thus, Equation (14) holds, which implies

q

1− q
1− π
π

=
q′

1− q′
1− π0

π0

.

D.3.2 Boundary solutions

• (θ∗ = p̂G): Since p̂G is a unique maximizer of (21), we have

lim
θ↓p̂G

∂U(θ)

∂θ
≤ 0 ≤ lim

θ↑p̂G

∂U(θ)

∂θ
.

By rewriting ∂P̃I(θ)
∂θ

using (25) and (27), we obtain

(
(1− p) + pσi
p+ (1− p)σi

)k̂−1(
p

1− p

)n−k̂+1

≤ 1− q′

q′
π0

1− π0

≤
(

1− p
p

)k̂(
1− (1− p)σg

1− pσg

)n−k̂
,

which implies that

(
p

1− p

)2(k̂−1)−n

≤ q′

1− q′
1− π0

π0

≤
(

p

1− p

)2k̂−n

.

We compare the above inequalities with (12). The jurors’ voting behavior with π and

q is exactly the same as the voting behavior when the jurors’ belief is π0 and their

reasonable doubt is q′.

• (θ∗ = 0): The right derivative at θ = 0 must be less than or equal to 0. We apply (25)

to the derivative of the objective function in (21) and take σg close to 0. Then

(
p

1− p

)k̂
≤ q′

1− q′
1− π0

π0

.

Note that θ∗ induces the equilibrium voting behavior (σg = 0, σi = 0). This strategy

profile becomes an efficient equilibrium voting behavior when the right-hand side of

(10) is greater than or equal to the left-hand side. That is,

(
p

1− p

)k̂
≤ q

1− q
1− π
π

.
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From the above two inequalities, we observe that the equilibrium voting behavior is

the same when jurors’ belief is π0 and their reasonable doubt is q′.

• (θ∗ = θ̄): The left derivative at θ = θ̄ must be non-negative. By applying (27) to the

derivative of U(θ), we obtain

lim
θ↑θ̄

∂U(θ)

∂θ
≥ 0,

which implies that

(
p+ (1− p)σ̄i
(1− p) + pσ̄i

)k̂−1(
1− p
p

)n−k̂+1

≥ q′

1− q′
1− π0

π0

,

where (σ̄i, σg = 1) is an equilibrium voting behavior at π = π0.

In this situation, a juror with signal i is indifferent between voting for conviction and

voting for acquittal. Thus, (13) becomes

(
p+ (1− p)σ̄i
(1− p) + pσ̄i

)k̂−1(
1− p
p

)n−k̂+1

=
q

1− q
1− π0

π0

.

From the above two expressions, we have

q

1− q
≥ q′

1− q′
,

which implies

q ≥ q′.

If q ≥ q′, the prosecutor offers θ∗ = θ̄, and all defendants plead not guilty (π = π0).

Jurors’ reasonable doubt is q
1−q , which is the same as the reasonable doubt in the jury

model without plea bargaining. Although we have restricted the prosecutor’s strategy

space to [0, θ̄], any θ∗ higher than θ̄ induces the same equilibrium expected utility for

the prosecutor as θ∗ = θ̄.

D.4 Proof of Corollary 5

Fix α ∈ (0, 1) and a jury size n, let k̂ be the smallest integer that is larger than αn. An

efficient equilibrium voting behavior is responsive for every π̄(k̂) < π < π̄(−n+ k̂− 1). Note

that π̄(l) is by definition strictly decreasing in l. Thus, a responsive voting behavior becomes
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the efficient equilibrium voting behavior for every 0 < π ≤ 1 the jury size n increases to

infinity.

Consider the efficient equilibrium voting behavior under the unanimity rule. The convic-

tion probability of a guilty defendant converges to 1−
(

(1−q)(1−p)π
qp(1−π)

) 1−p
2p−1

, and the conviction

probability of an innocent defendant converges to
(

(1−q)(1−p)π
qp(1−π)

) p
2p−1

. (See Proposition 2 in

Feddersen and Pesendorfer (1998))

Under a general super-majority rule, for every jury size n, we have 1−π
π

= 1−π0
π0

if q > q′,

or q
1−q

1−π
π

= q′

1−q′
1−π0
π0

if q ≤ q′. Thus, we define

q̃ = max{q, q′},

and obtain
q

1− q
1− π
π

=
q̃

1− q̃
1− π0

π0

.

We now apply Proposition 3 in Feddersen and Pesendorfer (1998): the conviction probability

for a guilty defendant converges to 1 and for an innocent defendant to 0.

From Proposition 3 in this paper, we can relate the expected punishments, one for guilty

defendants and the other for innocent defendants, to the conviction probabilities in jury

trials.

E Other Notions of Equilibrium Refinements.

It is worth investigating if we can apply equilibrium refinement concepts other than the most

efficient equilibrium. It turns out that refinement using weakly undominated strategies by

Gerardi and Yariv (2007) or the trembling hand perfection by Austen-Smith and Feddersen

(2005) does not lead to a unique equilibrium voting behavior at every level of jurors’ common

belief π.

Take any super-majority rule, and suppose that 1 < k̂ < n and 0 < π < π̄(k̂). Previously

in the proof of Proposition 1, we observed that (σg = 1, σi = 1) and (σg = 0, σi = 0) are

symmetric equilibria. We demonstrate that both (σg = 0, σi = 0) and (σg = 1, σi = 1) are

weakly undominated strategies and neither of them passes the trembling hand perfection

criterion.

First, (σg = 0, σi = 0) is not a weakly dominated strategy. Suppose that all other

jurors, except juror j, play (σ′g = 1, 1
2
< σ′i < 1). If juror j is pivotal, k̂ − 1 other jurors
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vote for conviction. The best response for juror j with signal g is to vote for acquittal.

Some other jurors’ conviction votes may come from signal i. Thus, other k̂− 1 jurors’ votes

for conviction combined with juror j’s guilty signal give insufficient evidence to overcome

π < π̄(k̂). Clearly, the best response for a juror with signal i is also voting for acquittal.

Therefore, (σg = 0, σi = 0) is not a weakly dominated strategy.

Second, (σg = 1, σi = 1) is not a weakly dominated strategy either. Suppose all other

jurors, except juror j, play (0 < σ′′g <
1
2
, σ′′i = 0). If juror j is pivotal, k̂− 1 other jurors vote

for conviction. The best response for juror j with signal i is to vote for acquittal. Other k̂−1

jurors’ conviction votes may offer even stronger evidence that the defendant is guilty than

the evidence from k̂ guilty signals. The best response for juror j is to vote for conviction

regardless of her own signal. Therefore, (σg = 1, σi = 1) is not a weakly dominated strategy.

Neither (σg = 0, σi = 0) nor (σg = 1, σi = 1) passes the trembling hand perfection.

Suppose that (σg = 0, σi = 0) is a Bayesian Nash equilibrium satisfying the trembling hand

perfection. That is, there exists a sequence of perturbed games such that a corresponding

sequence of Bayesian Nash equilibria (σng = εn1 , σ
n
i = εn2 ) assigns strictly positive probabilities

to both pure strategies and converges to (σg = 0, σi = 0). However, such a sequence of

Bayesian Nash equilibria can not exist. A guilty signal g gives a strictly higher incentive to

vote for conviction than an innocent signal i. If a juror with signal g is indifferent between

voting for conviction and voting for acquittal, she must strictly prefer to vote for acquittal

with signal i. Therefore, (σg = 0, σi = 0) does not pass the trembling hand perfection.

Similarly, (σg = 1, σi = 1) does not pass the trembling hand perfection criterion, either.
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