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In this paper we propose a methodology for estimating preference parameters in

matching models. Our estimator applies to repeated observations of matchings among

a fixed group of individuals, which is a similar data structure as in Fox (2010). Our

estimator is based on stability conditions in the matching models; we consider both

transferable (TU) and non-transferable utility (NTU) models. In both cases, the stabil-

ity conditions yield moment inequalities which can be taken to the data. The preference

parameters are partially identified. We consider simple illustrative examples, and also

an empirical application to aggregate marriage markets.

1. Setup

Consider a setup where we observe repeated individual-level matchings among a

group of N men and women. Index men (women) by m = 1, . . . , N (w = 1, . . . , N). The

set of men (women) is denoted M (W ). Each man m ∈M has a set of strict preferences

>m over W ∪ {m}; similarly, each woman w ∈ W has a set of strict preferences >w

over men M ∪ {w}. We assume that matchings are one-to-one.

Moment conditions are defined for each potential pair of couples through the stability

conditions. First, define the utility indicators, for i, k ∈M and j, l ∈ W

dijl := 1(j >i l) and djik := 1(i >j k).

For the nontransferable utility (NTU) model, the stability condition implies:

for i, k ∈M and j, l ∈ W , with i 6= k and j 6= l,

(1) (i, j), (k, l) matched ⇒

{
diljdlik = 0, and

djkidkjl = 0

This stability condition implies the moment inequality:

Pr((i, j), (k, l) matched) ≤ Pr(diljdlik = 0, djkidkjl = 0).

Date: June 20, 2013
Echenique and Shum are affiliated with the Division of the Humanities and Social Sciences, Cali-
fornia Institute of Technology, Pasadena, CA 91125; Lee is with Department of Economics, Univer-
sity of Pennsylvania, Philadelphia, PA 19104. Emails: fede@hss.caltech.edu, mshum@caltech.edu,
sangmok@sas.upenn.edu.

1



2 FEDERICO ECHENIQUE, SANGMOK LEE, AND MATTHEW SHUM

For the transferable utility (TU) model, let A = (αi,j) be a |M | × |W | matrix

of non-negative real numbers. A is called a surplus matrix, in which αi,j is the surplus

jointly generated by man-i and woman-j.

A matching is called optimal if it achieves the maximum total surplus. It is well-

known that optimality corresponds to the appropriate notion of stability for the TU

model (Shapley and Shubik, 1971). The formal notion of stability requires a discussion

of agents’ payoffs; for reasons of space, we omit the definition of stability and focus

instead on optimal matchings.

A necessary condition of the optimal matching is the pairwise-stability condition:

(i, j), (k, l) matched ⇒ αij + αkl ≥ αil + αkj.

This leads to the moment inequality

Pr((i, j), (k, l) matched) ≤ Pr(αij + αkl ≥ αil + αkj; β).

For both NTU and TU models, the LHS of the moment inequalities can be obtained

directly from the data, as sample frequencies when the number of repeated matchings

grows large. The RHS of the moment inequalities will depend on the utility parameters,

once we specify the utility functions. (A simple example will be presented in the next

section.) The number of moment conditions then is the number of potential pairs of

couples that can be observed; out of N men and women, there are N2 potential couples

that can be formed; hence, there are N2 ∗ (N − 1)2 pairs of potential couples consisting

of two distinct men and two distinct women.

1.1. Comparison with other estimation approaches. Note that generally, param-

eters in both NTU and TU setting will be partially identified. For the NTU setting,

this is due to the multiplicity of stable matchings, and echoes the partial identifica-

tion results for game models with multiple equilibria (cf. Ciliberto and Tamer (2009),

Beresteanu et al. (2011)). For the TU setting, even though the optimal matching is

generally unique, we are using only necessary conditions for identification, and hence

partial identification results. This contrasts with Fox (2010), who considers maximum

score estimation of the TU model using the pairwise stability conditions, and obtains

point identification of utility parameters.



PARTIAL IDENTIFICATION IN TWO-SIDED MATCHING MODELS 3

2. Example: NTU model

Here we present a simple 2 × 2 example with two men (i, k) and two women (j, l).

Utilities are:

Um,w = βM |Agem − Agew|+ εm,w;

Uw,m = βW |Agem − Agew|+ εw,m.

Utilities depend just on the age differences between the matched persons. The unob-

served portion of utility, ε, is assumed to be distributed i.i.d. N(0, 1
2
) across all m,w,

and identically for men and women.

With just two men and two women, there are only two pairs of distinct potential

couples: {(i, j), (k, l)} and {(i, l), (k, j)}. Hence there are two moment inequalities.

Assume that, from the data, we have the following match frequencies:

Pr({(i, j), (k, l)}) = 0.3

Pr({(i, l), (k, j)}) = 1− Pr({(i, j), (k, l)}) = 0.7.

We consider the NTU model here. Hence the first moment inequality says

Pr({(i, j), (k, l)}) ≤ Pr(diljdlik = 0, djkidkjl = 0).

Given the utility specification above, this becomes (letting ∆ij := |Agei − Agej|):

Pr({(i, j), (k, l)}) ≤ [1− Φ(βM(∆il −∆ij))Φ(βW (∆il −∆kl))]

· [1− Φ(βW (∆jk −∆ji))Φ(βM(∆kj −∆kl))] .

Analogously, for the second moment inequality, we have:

1− Pr({(i, j), (k, l)}) ≤ [1− Φ(βM(∆kl −∆kj))Φ(βW (∆kl −∆il))]

· [1− Φ(βW (∆ij −∆kj))Φ(βM(∆ij −∆il))] .

For our example, we have that ∆kj = ∆il = 0.5, while ∆ij = ∆kl = 0.

The identified set for the NTU version of this simple example is shown in Figure 1.

To a certain degree, the admissible preferences of men and women have an “antipodal”

feature. When βM � 0, implying that men dislike a large age gap, then βW � 0,

implying that women prefer a larger age gap. When men prefer a larger age gap

(βM > 0), however, then women may be either indifferent or dislike a large age gap

(βW ≤ 0).

Such antipodal preferences is consistent with a general logic of stability in NTU

settings. In such a setting, an observed matching may not be indicative that each

person is matched to a “most preferred” partner; rather, stability of the observed

matching only implies that (say) each man is not able to find a more preferable partner
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Figure 1. Identified set for simple 2x2 example: NTU model
X-axis: βM ; Y-axis: βW
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who would also prefer to be matched with him rather than her current mate. It is this

“no blocking pairs” requirement which restricts the utility parameter values. In the

example, we assumed that “unequal-aged matchings” (i.e. {(k, j), (i, l)}) occurred with

probability 0.7, which is higher than the “equal-age matchings” (i.e. {(i, j), (k, l)}). The

“no blocking pairs” conditions then implies that if men value an equal-aged partner (i.e.

βM < 0), then women must value an unequal-aged partner (i.e. βW > 0), and vice-versa.

We see these implications in the identified set of admissible preference parameters.

3. Aggregate matching model

One problem with the present estimator is the need to observe repeated matchings

from comparable populations. Also, the population should be relatively small, in order

for the number of moment conditions to stay modest and manageable. Both of these

requirements are difficult to fulfill in practice. Therefore, in this section we consider

the robustness of our estimator when applied to aggregate data: that is, when the data

available are tables of the match frequencies for different aggregate types of agents.

We spell out the theory of such aggregate matchings in another paper (Echenique et al.

(2013)). Here we introduce and define basic concepts, which will be used in the empirical

application below.

An aggregate matching market is described by a triple 〈M,W,>〉, where:

(1) M and W are disjoint, finite sets.
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(2) >:= ((>m)m∈M , (>w)w∈W ) is a profile of strict preferences: for each m and w,

>m is a linear order over W ∪ {m} and >w is a linear order over M ∪ {w}.

We call agents on one side men, and on the other side women, as is traditional in the

matching literature. The elements of M are types of men, and the elements of W are

types of women. Many applications are, of course, to environments different from the

marriage matching market.

Note that preferences > above effectively rules out preference heterogeneity among

agents of the same type. While this is restrictive relative to other aggregate matching

models in the literature, such as Choo and Siow (2006), Galichon and Salanie (2009),

both of these papers consider the TU model. For the NTU model (which is the focus

of this section), stability conditions for a model with agent-specific preference hetero-

geneity has no empirical implications at the aggregate level (see Appendix A for further

discussions). For this reason, we assume that all agents of the same type have identical

preferences.

Consider an aggregate matching market 〈M,W,>〉, with M = {m1, . . . ,mK} and

W = {w1, . . . , wL}. An aggregate matching is a K × L matrix X = (Xij) with non-

negative integer entries. The interpretation of X is that Xij is the number of type-i

men and type-j women matched to each other. An aggregate matching X is canonical

if Xij ∈ {0, 1}. For any aggregate matching X, we can construct a canonical aggregate

matching Xc by setting Xc
ij = 0 when Xij = 0 and Xc

ij = 1 when Xij > 0.

We consider, in turn, the nontransferable utility model and its empirical implemen-

tation, followed by the transferable utility model.

3.1. Non-transferable utility model. An aggregate matching X is stable if it is

individually rational and there are no blocking pairs for X. Obviously, an aggregate

matching X is stable if and only if the corresponding canonical matching Xc is stable.

Therefore, our empirical results below pertain to canonical aggregate matchings.

Given a canonical matchingX, we define an anti-edge as a pair of couples {(i, j), (k, l)}
with i 6= k ∈M and j 6= l ∈ W such that Xij = Xkl = 1. Then, stability of the canon-

ical aggregate matching X is equivalent to:

(2) (i, j), (k, l) anti-edge ⇒

{
1(wl >mi

wj) · 1(mi >wl
mk) = 0, and

1(wj >mk
wl) · 1(mk >wj

mi) = 0.

In our empirical work with the NTU model, Eq. (2) of the stability conditions forms

the basis for the moment inequalities. The anti-edge condition (2) implies that

Pr((i, j), (k, l) anti-edge) ≤ Pr(diljdlik = 0, djkidkjl = 0).(3)
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Given parameter values β, and our assumptions regarding the distribution of the ε’s,

these probabilities can be calculated. Hence, the moment inequality corresponding to

Eq. (3) is:

(4) E [1((i, j), (k, l) anti-edge)− Pr(diljdlik = 0, djkidkjl = 0; β))]︸ ︷︷ ︸
gijkl(X;β)

≤ 0.

The identified set is defined as

B0 = {β : Egijkl(X; β) ≤ 0, ∀i, j, k, l} .

These moment inequalities are quite distinct from the estimating equations considered

in the existing empirical matching literature. For instance, Choo and Siow (2006),

Dagsvik (2000), and Fox (2010) use equations similar to those in the multinomial choice

literature, that each observed pair (i, j) represents, for both i and j, an “optimal choice”

from some “choice set”. The restrictions in (2) cannot be expressed in such a way.

Assume that we observe multiple aggregate matchings. Let T be the number of such

observations, and Xt denote the t-th aggregate matching that we observe. Then the

sample analog of the expectation in (4) is

1

T

∑
t

1((ij), (kl) is anti-edge in Xt)− Pr(diljdlik = 0, djkidkjl = 0; β)

=
1

T

∑
t

gijkl(Xt; β).

(5)

If the number of types of men and woman were equal (K = L), then there would

be K2×(K−1)2
2

such inequalities, corresponding to each couple of pairs. Note that the

expectation E above is over both the utility shocks ε’s, as well as over the “equilibrium

selection” process (which we are agnostic about).

There is by now a large methodological literature on estimating confidence sets for

parameters in partially identified moment inequality models that cover the identified

set B0 with some prescribed probability. (An incomplete list includes Chernozhukov

et al. (2007), Andrews et al. (2004), Romano and Shaikh (2010), Pakes et al. (2007),

Beresteanu and Molinari (2008).) While there are a variety of objective functions one

could use, we use here the simple sum of squares objective:

Bn = argminβQn(β) =
∑
i,j,k,l

[
1

T

T∑
t=1

gijkl(Xt; β)

]2
+

where [x]+ := max{x, 0}.
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3.2. Data and empirical implementation. In the empirical implementation, we use

data on new marriages, as recorded by the US Bureau of Vital Statistics.1 We consider

new marriages in the year 1988, and treat data from each state as a separate, indepen-

dent matching. We aggregate the matchings into age categories, and create canonical

matchings. For this application, we only include the age variable in our definition of

agent types, because it is the only variable which we observe for all the matchings.2

Table 1 has examples of aggregate matchings, and the corresponding canonical match-

ings, for several states. In these matching matrices, rows denote age categories for the

husbands, and the columns denote the age categories for the wives.

Table 1. Aggregate Matchings and the corresponding Canonical Matchings.

Age: Aggregate Matchings Canonical Matchings

|↓, ~→ 12-20 21-25 26-30 31-35 36-40 41-50 51-94 12-20 21-25 26-30 31-35 36-40 41-50 51-94

12-20 231 47 8 0 0 1 0 1 1 1 0 0 1 0
21-25 329 798 156 32 11 7 0 1 1 1 1 1 1 0

26-30 71 477 443 136 27 8 0 1 1 1 1 1 1 0

MI 31-35 11 148 249 196 83 21 0 1 1 1 1 1 1 0
36-40 2 41 105 144 114 51 1 1 1 1 1 1 1 1

41-50 0 15 42 118 121 162 25 0 1 1 1 1 1 1

51-94 0 2 11 11 35 137 158 0 1 1 1 1 1 1

12-20 8 1 0 0 0 0 0 1 1 0 0 0 0 0

21-25 17 31 4 0 0 0 0 1 1 1 0 0 0 0
26-30 2 21 22 7 1 0 0 1 1 1 1 1 0 0

NV 31-35 0 4 10 5 3 0 0 0 1 1 1 1 0 0

36-40 0 3 8 2 2 2 0 0 1 1 1 1 1 0
41-50 0 1 1 2 6 3 3 0 1 1 1 1 1 1

51-94 0 0 0 0 0 5 3 0 0 0 0 0 1 1

12-20 307 83 12 6 0 0 0 1 1 1 1 0 0 0
21-25 453 1165 214 64 10 6 1 1 1 1 1 1 1 1
26-30 113 698 703 190 51 17 0 1 1 1 1 1 1 0

PA 31-35 17 184 393 277 78 26 2 1 1 1 1 1 1 1
36-40 9 73 152 191 148 84 5 1 1 1 1 1 1 1
41-50 3 27 83 146 187 273 28 1 1 1 1 1 1 1
51-94 1 7 12 38 48 182 268 1 1 1 1 1 1 1

These aggregate canonical matchings have many 1’s, and hence many anti-edges.

Moreover, the matchings in Table 1 contain more non-zero entries below the diagonal,

which means that in a preponderance of marriages, the husband is older than the wife.

In our empirical exercise, the specification of utility is very simple, and it only involves

the ages of the two partners to a match. Suppose that man m of age Agem is matched

1http://www.nber.org/data/marrdivo.html
2Because stability is defined at the level of the matching, we did not want to exclude any marriage
from the data due to missing variables.
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to woman w of age Agew. The following utility functions capture preferences over age

differences, and partner’s age.

Um,w = β1|Agem − Agew|− + β2|Agem − Agew|+ + εm,w

Uw,m = β3|Agem − Agew|− + β4|Agem − Agew|+ + εw,m,

where εm,w and εw,m are assumed to follow a standard normal distributions.

In this specification, we assume that utility is a piecewise-linear function of age, with

the “kink” occurring when the age-gap between husband and wife is zero. To interpret

the preference parameters, note that β1 (β3) is the coefficient in the husband’s (wife’s)

utility, attached to the age gap when the wife is older than the husband. Thus, a

finding that β1(β3) > 0 means that, when the wife older, men (women) prefer a larger

age gap: that is, men prefer older women, and women prefer younger men. Similarly,

a finding that β2(β4) > 0, implies that then when the husband is older than the wife,

men (women) prefer a larger age gap: here, because the husband is older, a larger age

gap means that men prefer younger women, and women prefer older men.

3.3. Relaxing the stability constraints. Stability (rationalizability) places very

strong demands on the data that can be observed, since we often observe many 1’s, and

hence many anti-edges, in aggregate canonical matchings (See Eq. (2) and (3)). Ac-

cordingly, we propose a relaxation of the stability constraint that is particularly useful

in applied empirical work.

Namely, we assume that potential blocking pairs may not necessarily form. If prefer-

ences are such that the pair (m,w) would block X, the block actually occurs only with

probability less than 1. The reason for not blocking could be simply the failure of m

and w to meet or communicate (as in the literature on search and matching).

Specifically, we allow for the possibility that an observed edge between pairs (i, j)

and (k, l) may imply nothing about the preferences of the affected types i, j, k, l, simply

because the couples (i, j) and (k, l) fail to meet. In particular, define

δijkl = Pr(types (i, j), (k, l) communicate).

We then modify the stability inequalities (2) as:

(6)

(
(i, j), (k, l) is anti-edge

(i, j), (k, l) meet

)
⇒

{
diljdlik = 0

djkidkjl = 0.

This leads to the modified moment inequality:

Pr((i, j), (k, l) anti-edge) ≤ Pr(diljdlik = 0, djkidkjl = 0; β)

δijkl
.(7)
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As δijkl → 1, the identified set B0 shrinks to the empty set. Thus the observed

aggregate matchings cannot be rationalized without a positive probability that potential

blocking pairs do not form. On the other hand, as δijkl → 0, the identified set converges

to the whole parameter space: the right-hand side of the moment inequality becomes

larger than 1.

Here, the events ((i, j), (k, l) is anti-edge) and ((i, j), (k, l) meet) are independent.

The first event depends on preferences and process that produces a stable matching in

the first place. On the other hand, we allow δijkl to depend on the relative number of

matched (i, j) and (k, l) couples. So we are making the assumption that the probability

of communication is independent of preferences and the matching.3 Specifically, letting

γ denote a scaling parameter, we set

δijkl = min{ 2 · γ · Xij

N
· Xkl

N
, 1 }

where N is the number of observed men (women).

To interpret this, consider a given pair of couples (i, j), (k, l). If this couple constitutes

an anti-edge, and the stability conditions fails, then two potential blocking pairs can

be formed: (i, l) and (k, j). The specification for δijkl represents one story for when a

blocking pair which is present in the agents’ preferences, actually blocks. With Xij/N

(resp. Xkl/N) being the relative populations of (i, j) (resp. (k, j)) couples, then δijkl is

set proportional to the frequency of potential blocking pairs (j, l), (k, j) in the market;

it is scaled by γ (and capped from above by 1). We scale by γ to allow the probability

that a blocking pair forms to be smaller or larger than this frequency. A larger γ implies

that blocking pairs form more frequently, so that there is less slackness in the stability

restrictions.

More broadly, the δs weight the anti-edges in the sample moment inequalities. Intu-

itively, an anti-edge {(i, j), (l, k)} should receive a higher weight when it involves many

potential blocking pairs than when it only involves a few. Our specification achieves this

idea, as it makes the probability of forming a blocking pair dependent on the number

of agents involved.

3.4. Identified sets. Table 2 summarizes the identified set for several levels of γ, and

presents the highest and lowest values that each parameter attains in the identified set.

The unrestricted interval in which we searched for each parameter was [−2, 2]. So we

see that, for a value of γ = 25, the identified set contains the full parameter space,

implying that the data impose no restrictions on parameters. At the other extreme,

3We could relax this assumption by making δ dependent on the same covariates that enter into the
agents preferences.
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Table 2. Unconditional Bounds of β.

β1 β2 β3 β4
γ min max min max min max min max
25 -2.00 2.00 -2.00 2.00 -2.00 2.00 -2.00 2.00
28 -2.00 1.60 -2.00 2.00 -2.00 1.60 -2.00 2.00
29 -2.00 0.40 -2.00 1.80 -2.00 0.40 -2.00 1.80
30 -2.00 -0.80 -2.00 0.60 -2.00 -0.85 -2.00 0.60

when γ ≥ 31, the identified set becomes empty, implying that the observed matchings

can no longer be rationalized.

For γ = 30, we see that β1 and β3 take negative values, while the values of β2 and β4

tend to take negative values but also contain small positive values. This suggests that

husbands’ utilities are decreasing in the wife’s age when the wife is older, but when

the wife is younger, his utility is less responsive to the wife’s age. A similar picture

emerges for wives’ utilities, which are increasing in the husband’s age when the husband

is younger, but when the husband is older, the wife’s utility is less responsive to her

husband’s age. All in all, our findings here support the conclusion that husbands’ and

wives’ utilities are more responsive to the partner’s age when the wife is older than the

husband.

A richer picture emerges when we consider the joint values of parameters in the iden-

tified set. Figure 2 illustrates the contour sets (at different values of γ) for the husband’s

preference parameters (β1, β2), holding the wife’s preference parameters (β3, β4) fixed.

To simplify the interpretation of these findings in light of the stability restrictions,

we recall two features of our aggregate matchings (as seen in Table 1): first, there are

more anti-edges below the diagonal, where Agem > Agew. Second, there are more

“downward-sloping” anti-edges than “upward-sloping” ones. That is, there are more

anti-edges {(i, j), (k, l)} with k > i, l > j than with i > k, l > j, as illustrated here.

Downward-sloping anti-edge:

(i, j) (i, l)

(k, j) (k, l)

Upward-sloping anti-edge:

(k, j) (k, l)

(i, j) (i, l)

Because of these features, we initially focus on the parameters (β2, β4), which describe

preferences when the husband is older than the wife.

The graphs in the bottom row of Figure 2 correspond to β4 = −2, corresponding to

the case that the wife prefers a younger husband: with a downward-sloping anti-edge,

this implies that it is likely that djik = 1 and dlki = 0. In turn, using the stability
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Figure 2. Identified sets of (β1, β2) given (β3, β4) and γ.
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restrictions (2), this implies that dilj = 0 (that husbands prefer younger wives), but

places no restrictions on the sign of dkjl. For this reason, we find that in these graphs,

β2 tends to take positive values at the highest contour levels so that, when husbands

are older than their wives, they prefer the age gap to be as large as possible.

By a similar reasoning, β2 takes negative values when β4 = 1. When wives prefer

older husbands (which is the case when β4 = 1), then with a downward-sloping anti-

edge, this implies that djik = 0 and dlki = 1. Consequently, stability considerations

would restrict the husband’s preferences so that dkjl = 0 (and husbands prefer older

wives), leading to β2 < 0.

On the other hand, because there are more downward-sloping anti-edges, when the

wife is older than the husband, restriction (2) implies that one of two cases – either

the husband prefers a younger wife, or the wife prefers an older husband – must be
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true. In Figure 2, as β3 increases from −2 to 1 (from the left to the right column), the

wife’s utilities becomes more favorable towards a younger husband. As a result, more

restrictions are imposed to the husbands’ utilities, which yields a tighter negative range

for β1 in the identified sets.

Overall, we see that β1 < 0 and β3 < 0, implying that as long as the wife is older than

the husband, both prefer a smaller age gap. On the other hand, β2 and β4 are negatively

correlated: as β4 increases, β2 decreases. This suggests that, when the husband is older

than the wife, one side prefers a smaller gap but the other side is less responsive on the

age gap.

3.5. Confidence sets. Figure 3 summarizes the 95% confidence sets with γ = 28

(shaded lightly) and 30 (shaded darkly). In computing these confidence sets, we use

the subsampling algorithm proposed by Chernozhukov et al. (2007). Comparing the

confidence sets in Figure 3 to their counterpart identified sets in Figure 2, the confidence

sets are slightly larger than the identified sets. This is not surprising, given the modest

number of matchings (fifty-one: one for each state) which we used in the empirical

exercise.

Nevertheless, the main findings from Figure 1 are still apparent; β1 < 0 across a range

of values for (β3, β4), and β2 < 0 (resp. > 0) when β4 > 0 (resp. < 0). These somewhat

“antipodal” preferences between a husband and wife are a distinctive consequence of

the stability conditions of an NTU matching model.

3.6. Transferable utility model. For the TU model, we define the surplus obtained

by matching of type-i man with type-j woman as:

αij = Uij + Uji

= (β1 + β3)|Agem − Agew|− + (β2 + β4)|Agem − Agew|+ + εij + εji.

We work from the pairwise stability condition: for every anti-edge {(i, j), (k, l)}, we

have

(i, j), (k, l) anti-edge⇒ αij + αkl ≥ αil + αkj.

This leads to the moment inequality

Pr((i, j), (k, l) anti-edge) ≤ Pr(αij + αkl ≥ αil + αkj; β).

This condition derived via optimality. Given an aggregate matching X, suppose

{(i, j), (k, l)} is an anti-edge (i.e., Xij > 0 and Xkl > 0). Consider an alternative
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Figure 3. 95% confidence sets of (β1, β2) given (β3, β4) and γ = 32
(shaded lightly) and 35 (shaded darkly).
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aggregate matching X ′ where a pair of {(i, j), (k, l)} couples are swapped:

X ′ij = Xij − 1, X ′kl = Xkl − 1,

X ′il = Xil + 1, X ′kj = Xkj + 1.

By optimality of X, this swapping must lower surplus:

αijXij + αilXil + αkjXkj + αklXkl ≥ αijX
′
ij + αilX

′
il + αkjX

′
kj + αklX

′
kl

= αij(Xij − 1) + αil(Xil + 1)

+ αkj(Xkj + 1) + αkl(Xkl − 1)
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=⇒ αij + αkl ≥ αil + αkj.

For the same reason as in the NTU model, we relax the stability constraints by

introducing communication probabilities:

Pr((i, j), (k, l) anti-edge) ≤ Pr(αij + αkl ≥ αil + αkj; β)

δijkl
.

The identified set for the TU model takes the form K1 ≤
∑4

i=1 βi ≤ K2. First, if all

(i, j), (i, l), (k, j), and (k, l) are “below the diagonal” (i.e. Agem > Agew):

αij + αkl

= (β2 + β4)|Agei − Agej|+ + (β2 + β4)|Agek − Agel|+ + Σij,kl

(since Agei > Agej and Agek > Agel) + Σij,kl

= (β2 + β4)(Agei − Agej) + (β2 + β4)(Agek − Agel) + Σij,kl

= (β2 + β4)(Agei − Agel) + (β2 + β4)(Agek − Agej) + Σij,kl

= αil + αkj − Σil,kj + Σij,kl

(since Agei > Agel and Agek > Agej)

where we define the shorthand Σij,kl = εij + εji + εkl + εlk. Since the event αij + αkl ≥
αil + αkj is equivalent to Σij,kl ≥ Σil,kj, and involves no model parameters, stability

(rationalizability) imposes no restriction on the data in the “below diagonal” case.

Similarly, stability imposes no restriction on the observed matchings for (i, j), (k, l),

(i, l), and (k, j) which are all above diagonal (i.e., Agem < Agew).

Therefore, identification is determined by moment conditions corresponding to men

i and k, and women j and l, where we have a pair below diagonal, and a pair above

diagonal. Suppose, for example, (i, j), (k, l), and (k, j) are below diagonal, but (i, l) is

above diagonal (i.e., Agek > Agel > Agei > Agej):

αij + αkl

= (β2 + β4)|Agei − Agej|+ + (β2 + β4)|Agek − Agel|+ + Σij,kl

(since Agei > Agej and Agek > Agel)

= (β2 + β4)(Agei − Agej) + (β2 + β4)(Agek − Agel) + Σij,kl
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Figure 4. Identified sets of
∑4

i=1 βi given γ.
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αil + αkj

= (β1 + β3)|Agei − Agel|− + (β2 + β4)|Agek − Agej|+ + Σil,kj

(since Agei < Agel and Agek > Agej)

= (β1 + β3)(Agel − Agei) + (β2 + β4)(Agek − Agej) + Σil,kj.

Therefore,

(αij + αkl)− (αil + αkj) = (β1 + β2 + β3 + β4)(Agei − Agej) + Σij,kl − Σil,kj

For all other cases, we have the same result: we can identify β up to
∑4

i=1 βi.

The identified set is presented in Figure 4, which is consistent with both antipodal

and non-antipodal preferences.
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4. Conclusions

In this paper we propose a methodology for estimating preference parameters in

matching models. Our estimator applies to repeated observations of matchings among

a fixed group of individuals. For both the transferable utility (TU) and non-transferable

utility (NTU) models, we derive moment inequalities based on the restrictions which

match stability places on the preferences of the agents.
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Appendix A. Individual-level heterogeneity

In our theoretical results, we have assumed that agents’ preferences depend only

on observables. This allowed us to obtain rather stark implications of stability for

aggregate matchings. Maybe the implications are too stark, in the sense that most of

the observed matchings in the data would not be rationalizable. If we add unobserved

heterogeneity, then the theoretical implications become weaker and “probabilistic”, but

the main thrust of these implications are preserved.

So, in a matching model that captures how preferences depend on observables, but

has additional noise, our conditions for rationalizability hold in a probabilistic sense.

The econometric approach proposed here involves just such a probabilistic version of

the model. Here we compare our approach to other papers in the literature.

One possible starting point is to assume that individuals of the same type have the

same preferences up to individual-specific i.i.d. shocks, which is the assumption in most

of the empirical literature.4

The i.i.d. shocks are a very limited form of unobserved heterogeneity: it allows two

(say) type i men to differ in the utility they would obtain from a matching with a (say)

type j woman. However, each of these men still remains indifferent between all type

j women.5 Thus two agents of the same type are still perceived as identical by the

opposite side of the market.

The shocks ensure that each agent-type has a non-zero probability of being matched

with any agent-type on the opposite side of the market; this reconciles the theory with

the observed data. In this respect, the role of the preference shocks in these papers

plays the same role as the “communication probability” δijkl in our empirical analysis.

The “communication probability” captures unobserved heterogeneity in the ability of

agents to match, perhaps as a result of noisy search frictions. It serves the same purpose

as i.i.d. preference shocks. The shocks, on the other hand, lead to trivial inequalities

at the aggregate level. We state this result here, and prove it in the Appendix B.

Claim 1. In the NTU model, preference shocks at the individual-level lead to trivially-

satisfied stability restrictions at the aggregate level.

Because of this result, then, i.i.d. individual-level preference shocks seem inappropri-

ate in the aggregate NTU setting of our empirical work. Furthermore, the communica-

tion probability δijkl plays a similar role in our empirical work as do preference shocks

4See, for instance, Choo and Siow (2006) and Galichon and Salanie (2009) for the TU model. For
NTU model, Uetake and Watanabe (2012) takes this utility specification with an assumption that the
model generates unique stable matchings.
5Galichon and Salanie (2009) also discuss this point (cf. pg. 10).
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in others’ work: namely, to better reconcile the theory to the data by enlarging the the

sets of marriages which one could observe in a stable matching.

The sample moment inequality (Eq. (5)), with the modification in Eq. (6), becomes:

1

T

∑
t

gijkl(Xt; β)

=

(
1

T

∑
t

1((i, j), (k, l) anti-edge in Xt)

)
∗ δijkl − Pr(diljdlik = 0, djkidkjl = 0; β)

for all combinations of pairs (i, j) and (k, l).

Appendix B. Details on Claim 1

We consider a market where every woman (man) is acceptable to all men (women).

The individual-level stability inequalities, for all pairs (i, j), are:∑
k:k>ij

Xik +
∑
k:k>ji

Xkj +Xij ≥ 1.6

Letting dikj = 1{k >i j}, this can be written as:

(8)
∑
k

Xikdikj +
∑
k

Xkjdjki +Xij ≥ 1.

Here (i, j, k) all denote individual agents, not types. These inequalities cannot be taken

directly to the data, because we do not observe the individual-level matching, but rather

an aggregate-level matching.

One starting point is to treat both the X’s and the d’s as random variables, where

the randomness derives from both the individual-level preference shocks, as well as

from the procedure whereby the observed matching is selected among the set of stable

matchings. We partition the men and women into types tM1 , . . . t
M
L and tW1 , . . . t

W
L . Since

individual-level preference shocks are i.i.d., we obtain that

(9) Pr(dijk = 1) = Pr(di′j′k′ = 1) : ∀(i, i′) ∈ tMi , (j, j′) ∈ tMj , (k, k′) ∈ tMk .

That is, the distribution of dijk is identical for all individuals of the same type. Hence,

below we will use the notation Pr(dijk = 1) and Pr(tWj >tMi
tWk ) interchangeably.

6These individual-level inequalities express the same notion of stability as the aggregate stability
conditions (2), but can be written in this more succinct way here due to the summing-up requirements
at the individual-level (i.e., that

∑
j Xij = 1 for all i). These summing-up conditions do not hold for

canonical aggregate matchings.
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Given these assumptions, we can derive an aggregate version of Eq. (8). First, we

take expectations:∑
k

E [Xikdikj] +
∑
k

E [Xkjdjki] + E [Xij] ≥ 1

⇐⇒
∑
k

X̄ikj · Pr(dikj = 1) +
∑
k

X̄kji · Pr(djki = 1) + E [Xij] ≥ 1

with X̄ikj ≡ E [Xikdikj|dikj = 1].

Next, we aggregate up to the type-level:∑
l

{
Pr
{
tWl >tMi

tWj

}
X̄tMi tWl tWj

}
+
∑
l

{
Pr
{
tMl >tWj

tMi

}
X̄tMl tWj tMi

}
≥
∣∣tWj ∣∣ ∣∣tMi ∣∣ (1− E[Xij]).(10)

Here X̄tMi tWl tWj
≡
∑

k∈tWl

∑
i∈tMi

∑
j∈tWj

X̄ikj and X̄tMl tWj tMi
≡
∑

j∈tMi

∑
j∈tWj

∑
i∈tMi

X̄kji.

In the above inequality, only the
∣∣tWj ∣∣ and

∣∣tMi ∣∣ are observed, but nothing else. This is

of little use empirically.

On the other hand, because dijk ≥ 0, for all (i, j, k), we also have

E(Xikdikj) =E(Xikdikj|dikj = 1)Pr(dikj = 1) ≤ E(Xik)

⇒
∑
k∈tWl

E(Xikdikj|dikj = 1)Pr(dikj = 1) ≤
∑
k∈tWl

E(Xik)

⇔Pr(tWl >i j)
∑
k∈tWl

X̄ikj ≤
∑
k∈tWl

E(Xik)

⇒
∑
i∈tMi

Pr(tWl >i j)
∑
k∈tWl

X̄ikj ≤
∑
i∈tMi

∑
k∈tWl

E(Xik)

⇔Pr(tWl >tMi
j)
∑
i∈tMi

∑
k∈tWl

X̄ikj ≤ XtMi tWl

⇒Pr(tWl >tMi
tWj )

∑
j∈tWj

∑
i∈tMi

∑
k∈tWl

X̃ikj ≤
∣∣tWj ∣∣XtMi tWl

⇔Pr(tWl >tMi
tWj )X̄tMi tWl tMj

≤
∣∣tWj ∣∣XtMi tWl

(11)

Combining inequalities (10) and (11), we get∑
l

∣∣tWj ∣∣XtMi tWl
+
∑
l

∣∣tMi ∣∣XtMl tWj
≥
∣∣tWj ∣∣ ∣∣tMi ∣∣ (1− E[Xi,j])

By the equalities
∑

lXtMi tWl
=
∣∣tMi ∣∣ and

∑
lXtMl tWj

=
∣∣tWj ∣∣, the above reduces to

2
∣∣tMi ∣∣ ∣∣tWj ∣∣ ≥ ∣∣tMi ∣∣ ∣∣tWj ∣∣ (1− E[Xij]) ⇒ 2 ≥ (1− E[Xij])

which is trivially satisfied.
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