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Abstract

We study the manipulability of stable matching mechanisms. To quantify incentives

to manipulate stable mechanisms, we consider markets with random cardinal utilities,

which induce ordinal preferences over match partners. We show that most agents in

large matching markets are close to being indifferent overall stable matchings. In one-

to-one matching, the utility gain by manipulating a stable mechanism does not exceed

the gap between utilities from the best and worst stable partners. Thus, most agents in

a large market would not have significant incentives to manipulate stable mechanisms.

The incentive compatibility extends to many-to-one matching when agents employ

truncation strategies and capacity manipulations in a Gale-Shapley mechanism.
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1 Introduction

In the practice of market design, stable matching mechanisms are often used in two-sided

markets. They are used to match agents of one kind (firms) with agents of another kind

(workers), most famous being the National Resident Matching Program (NRMP).1 We ask

why stable matching mechanisms have been so successful, despite that they are not strategy-

proof. In particular, we analyze whether the presence of a large number of participants can

mitigate the incentives to misrepresent preferences.

The concept of stability has been considered of central importance. A matching is re-

garded as stable if no agent would rather remain unmatched than matching to her current

partner, and if no pair of agents prefers each other to their current partners. A stable

mechanism takes preference reports from participants and produces a stable matching on

reported preferences. Most stable mechanisms have been successful (Roth and Xing, 1994;

Roth, 2002; McKinney et al., 2005). For the NRMP, the Association of American Medical

Colleges even required stability as a key property of their matching algorithm (Roth, 1984).

However, no stable mechanism is strategy-proof (Roth, 1982). A market participant can

achieve a better match by misreporting her preferences, either by changing the order of her

preference list or by announcing that some agents are unacceptable.2 The mechanism in

the NRMP may be manipulated by participants, thereby not implementing the intended

matching. Also, each participant’s decision may become difficult as she must best respond

to other agents’ strategic manipulations.

Reconciling the success and limitation of stable mechanisms is important. The most

well-known findings are by Roth and Peranson (1999), Immorlica and Mahdian (2005), and

Kojima and Pathak (2009).3 These studies consider a large market approach motivated

by more than 4,000 residency programs and 25,000 doctors in the NRMP.4 They consider

the worker-optimal stable mechanism, which makes truth-telling a dominant strategy for

workers. The expected proportion of firms that have any incentive to misrepresent their

preferences converges to zero as the market increases.

1See Roth and Peranson (1999) for other various professional labor markets implementing stable matching
mechanisms.

2Alcalde and Barberà (1994) and Sönmez (1999) show that strategy-proofness is incompatible not only
with stability but with a weaker condition of Pareto efficiency and individual rationality.

3See Kojima (2015) for a summary of the relationship between the previous three papers and the current
paper. Also, Feldin (2003) takes a similar approach with assuming zero commonalities of preferences.

4The recent data on residency and fellowship matching are available on http://www.

nrmp.org/match-data/main-residency-match-data/ and http://www.nrmp.org/match-data/

fellowship-match-data/.
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We believe that the previous papers rightly point out a large market effect on a stable

mechanism. However, the previous explanation of the large market effect seems inconsis-

tent with the markets in practice. The previous explanation relies on the assumption of

short preference lists : agents on one side (e.g., workers) consider only a vanishingly small

proportion of agents on the other side acceptable.5 In the NRMP, participants often have

very similar preferences (Agarwal, 2015). Medical school graduates prefer top-tier hospitals,

and hospitals prefer candidates with strong recommendation letters and high medical exam

scores. If agents have short and similar preferences, only a small number of agents on one

side would be accepted by agents on the other side. In this situation, many agents would

remain unmatched anyhow, so they would not manipulate a stable mechanism (See Section

?? in the online appendix for simulation results).6 This explanation of the large market

effect seems inconsistent with only 4.3% vacant positions in the NRMP 2015.

At first glance, the assumption of short preference lists may appear to be harmless. In

the NRMP, submitted preferences tend to have few commonalities so that short preference

lists do not leave many agents unmatched. Nevertheless, we believe that the short preference

lists with few commonalities should not be an assumption; rather, such observations must be

an implication of the non-manipulability. In practice, residency programs interview doctors

before submitting preferences. Since interviews are costly, the programs interview only

selective doctors and place them on their rank order lists. The selection takes into account

how likely a doctor is achievable with a possible manipulation of the mechanism. As such,

any restriction on preferences in a model, motivated by observed preferences in practice, may

assume to some extent the non-manipulability of the mechanism.

We give a very different explanation of the large market effect on stable mechanisms. The

key modeling strategy is to consider random cardinal utilities, by which ordinal preferences

are determined. We use cardinal utilities to quantify the incentives to manipulate stable

mechanisms. We ask how likely a market has a large proportion of agents with significant

incentives to manipulate. In one-to-one matching markets, we find that most agents in large

markets are close to indifferent between stable matchings. It is known in the literature that

each agent can gain utilities from manipulation up to the maximum wedge between utilities

from stable matchings. Thus, the maximum utility gain from manipulation vanishes as the

market increases. The results partially extend to many-to-one matching markets. We show

5For instance, each worker considers only the 30 most preferred firms to be acceptable. The limit can
grow, but the proportion of acceptable firms must vanish.

6By Rural Hospital Theorem and Demange et al. (1987), an unmatched agent in a stable matching cannot
effectively manipulate a stable mechanism.
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that firms have vanishing incentives to manipulate the worker-optimal stable mechanism

when they are assumed to play truncation strategies and capacity misrepresentations.7

The baseline model of one-to-one matching has n firms and n workers. Preferences of

firms over workers, or of workers over firms, are generated by utilities that are randomly

drawn from some underlying continuous distributions with bounded supports in R+:

Uf,w = U(Cw , ζf,w), and

Vf,w = V (Cf , ηf,w). (1)

Common values, Cf and Cw, represent intrinsic values of f and w, which induce vertical

preferences (e.g., top-tier vs. low-tier hospitals). Private values, ζf,w and ηf,w, are idiosyn-

cratic utilities, which induce horizontal preferences (e.g., geographical preferences). While

agents in a large market typically have multiple stable partners, most agents are close to

being indifferent between them (Theorem 1). In a large market, the utility of firm f in any

stable matching becomes

U∗f ≈ U(common value of a worker in the same position as f,

maximum of the support of the workers’ private values).

That is, firms and workers match assortatively in the common value dimension. An agent

gets as high a vertical match as possible given her vertical quality. At the same time, agents

find very good matches in the private value dimension.

As a consequence of the main result, we identify an ε-Nash equilibrium behavior in which

most participants report their true preferences (Theorem 2).8 When a stable mechanism is

applied to a one-to-one matching market, an agent can achieve from manipulation up to her

most preferred stable partner on true preferences (Demange et al., 1987). As such, our main

finding implies that, when all agents tell the truth, the expected proportion of agents with

significant incentives to manipulate vanishes. To find an ε-Nash equilibrium behavior, we let

agents with significant incentives manipulate the mechanism in a way that does not increase

other agents’ incentives. The rest of the agents continue to have insignificant incentives to

misreport preferences.

We extend our results to large many-to-one matching markets. The assortative feature

7In a truncation strategy, a firm submits a preference list of the first few workers in the same order as
the true preference list.

8Under an ε-Nash equilibrium, agents approximate the best response to other agents’ strategies. No one
can gain more than ε by switching to an alternative strategy.
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of stable matchings extends to large many-to-one matching markets (Theorem 3). We find

an ε-Nash equilibrium in a restricted environment in which the worker-optimal stable mech-

anism is applied, and firms only play truncation strategies and capacity misrepresentations

(Theorem 4).

We believe in showing the right way to characterize the large market effect with the

following three reasons.

First, our characterization of a large market effect is intuitively compelling. In the NRMP

2015, about half of the matched applicants matched to their top choices, and more than 85%

of matched applicants matched to their top four choices. It is very unlikely that such a

large proportion of workers in a labor market match to their truly most preferred firms. In

practice, agents have non-zero costs of doing interviews and submitting applications. As

such, agents interview only selective potential partners with judgments on the attainability

of a match. The assortative feature of stable matching makes such judgments in the common

value dimension easy.

Second, our model is consistent with two prominent features of the NRMP: a strong

commonality of preferences and non-increasing proportion of vacant positions. A recent

empirical analysis by Agarwal (2015), based on anecdotal evidence, even assumes a complete

commonality of preferences for residency programs. The estimated doctors’ preferences also

show a clear dependency on commonly observable characteristics of residency programs. The

short preference lists would lead to an increasing proportion of vacant positions. However, in

the NRMP 2015, only 4.3% of residency positions are vacant. The proportion is substantially

lower than the 12.2% of vacant positions in fellowship matching, even though the fellowship

matching markets for each sub-specialty tend to be much smaller.

Last, the speeds of convergence in our results are fast. In a market the size of the

NRMP, our approach gives more compelling results than the previous studies. Consider

linear utilities, Uf,w = λCw + (1 − λ)ζf,w, in which Cw, ζf,w ∼ U [0, 1]. For any arbitrary

ε, θ > 0, the chance of having a market realization in which a large (> θ) proportion of

agents has significant (> ε) incentives to manipulate a stable mechanism approaches quickly

to zero. The probability vanishes with speed o(e−n
1/2

), which is faster than O(1/n), the

corresponding speed in Immorlica and Mahdian (2005) and Kojima and Pathak (2009). (See

Remark 1 in the online appendix of Kojima and Pathak (2009)).9 In Section 5, we also

simulate how fast the maximum expected gain from manipulation vanishes. For the size

9Given two sequences 〈xn〉∞n=1 and 〈yn〉∞n=1, we denote by xn = O(yn) if there exists a constant M such
that |xn| ≤M |yn|. We denote by xn = o(yn) if xn/yn → 0.
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26,000, the maximum expected gain is about 0.0034, 0.0013, and 0.0004 for λ = 1/4, 1/2,

and 3/4, respectively. In many-to-one markets, in which each firm hires up to 8 workers, the

maximum gain for each firm is less than 0.014, for all three levels of commonality.

The large market approach has been extended to richer models. Ashlagi et al. (2014)

and Kojima et al. (2013), for instance, develop large matching markets with couples. When

couples are present, notwithstanding the concerns about strategic manipulation, a market

does not necessarily have a stable matching (Roth, 1984). It turns out that large markets

with couples are most likely to have stable matchings. If a mechanism produces a stable

matching (whenever one exists), it is an approximate equilibrium for all agents to submit

their true preferences.

There is an extensive large market literature beyond two-sided matching. Among many

others, Roberts and Postlewaite (1976) and Jackson (1992) study general equilibrium models,

and Gresik and Satterthwaite (1989) and Rustichini et al. (1994) study double auctions. In

the problems of allocating indivisible objects without monetary transfer, Kojima and Manea

(2010) and Che and Kojima (2010) study incentives in the probabilistic serial mechanism;

Liu and Pycia (2013) show the asymptotic equivalence of all symmetric, strategy-proof,

and ordinal efficient mechanisms. Hashimoto (2013) proposes a generalized random priority

mechanism, which approximates any incentive compatible mechanism. In mechanism design,

Kearns et al. (2014) considers a mechanism with agents concerned about keeping their types

private vis-a-vis other market participants; Azevedo and Budish (2013) study a notion of

approximate strategy-proofness.

The rest of this paper is organized as follows. In Section 2, we introduce a baseline model

of one-to-one matching markets with random utilities. We show that all stable matchings

tend to be assortative and find a truth-telling equilibrium behavior. In Section 3, we ex-

tend our model to many-to-one matching. In Section 4, we illustrate the intuition of the

proof using a random bipartite graph model. Section 5 includes the results on the speed of

convergence. An extension to incomplete information is found in Section 6. We relegate all

detailed proofs to the online appendix.

2 One-to-one Matching

2.1 Setup

We first build a setup based on the standard one-to-one matching model. We introduce

latent utilities, which in turn generate ordinal preferences.
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2.1.1 One-to-one Matching

There are n firms and an equal number of workers. We denote the set of firms by F and the

set of workers by W . Each firm has a strict preference list �f such as

�f= w1, w2, w3, ∅

This preference list indicates that w1 is firm f ’s first choice, w2 is the second choice, and that

w3 is the least preferred worker that the firm still wants to hire. We also write w1 �f w2 to

mean that f prefers w1 to w2. We call a worker w acceptable to f if w appears in the firm’s

preference list �f ; otherwise, we call the worker unacceptable. We define �w similarly for

each w ∈ W , and call �:= ((�f )f∈F , (�w)w∈W ) a preference profile.

A matching µ is a function from the set F ∪ W to itself such that (i) µ2(x) = x,

(ii) if µ(f) 6= f then µ(f) ∈ W , and (iii) if µ(w) 6= w then µ(w) ∈ F . A matching µ

is individually rational if each firm or worker is matched to an acceptable partner, or

otherwise remains unmatched. For a given matching µ, a pair (f, w) is called a blocking

pair if w �f µ(f) and f �w µ(w). A matching is stable if it is individually rational and

has no blocking pair.

For two stable matchings µ and µ′, we write µ �i µ′ if an agent i weakly prefers µ to

µ′: i.e., µ(i) �i µ′(i) or µ(i) = µ′(i). We also write µ �F µ′ if every firm weakly prefers

µ to µ′: i.e., µ(f) �f µ′(f) for every f ∈ F . Similarly, we write µ �W µ′ if every worker

weakly prefers µ to µ′: i.e., µ(w) �w µ′(w) for every w ∈ W . A stable matching µF is

firm-optimal if every firm weakly prefers it to any other stable matching µ: i.e., µF �F µ.

Similarly, a stable matching µW is worker-optimal if every worker weakly prefers it to

any other stable matching µ: i.e., µW �W µ. It is known that every standard one-to-one

matching market with strict preference lists has a firm-optimal stable matching µF and a

worker-optimal stable matching µW (Gale and Shapley, 1962). Moreover if µ and µ′ are both

stable matchings, then µ �F µ′ if and only if µ′ �W µ (Knuth, 1976). Thus for any stable

matching µ, it must be the case that µ �F µW and µ �W µF .

A matching mechanism M is a function �7−→ M(�) from the set of all preference

profiles to the set of all matchings. A mechanism M is stable if M(�) is a stable matching

with respect to preference profile �. We denote by MF and MW firm-optimal and worker-

optimal stable matching mechanisms.

A mechanism is strategy-proof if it is a dominant strategy for every agent to state her
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true preference list. That is, for every preference profile � and agent i ∈ F ∪W ,

M(�) �i M(�′i,�−i) for every �′i .

No stable matching mechanism is strategy-proof (Roth, 1982). Whenever there is more

than one stable matching, at least one agent can profitably misrepresent her preferences

(Roth and Sotomayor, 1990) by switching potential partners in her preference list or announc-

ing some acceptable partners unacceptable.10 Even the worker-optimal matching mechanism

(e.g., the worker-proposing Gale-Shapley algorithm), which makes it a dominant strategy for

workers to state true preferences (Roth, 1982; Dubins and Freedman, 1981), may not rule

out firms’ incentives to misrepresent their preference lists.

2.1.2 Random Utilities

We assume that preferences are induced by underlying cardinal utilities that are drawn

from underlying probability distributions. This approach allows us to measure incentives to

manipulate a stable matching mechanism.

A random market is a tuple 〈F,W,U, V 〉. U = [Uf,w] and V = [Vf,w] are two n×n random

matrices representing utilities. When a firm f and a worker w match with one another, the

firm f receives utility Uf,w and the worker w receives utility Vf,w. We use u and v to denote

realized matrices of U and V , respectively.

Utilities are defined as

Uf,w = U(Cw, ζf,w) and

Vf,w = V (Cf , ηf,w),

where Cw and Cf are common values, ζf,w and ηf,w are independent private values, and U(., .)

and V (., .) are continuous and strictly increasing functions from R2
+ to R+.

Common values are two random vectors

CW := 〈Cw〉w∈W and CF := 〈Cf〉f∈F ,

in which each Cw and Cf is drawn from distributions with positive density functions and

10Indeed, the conditions on a preference profile to yield a unique stable matching seem very restrictive
(Eeckhout, 2000; Clark, 2006), so most preference profiles admit agents with strategic incentives.
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bounded supports in R+. Independent private values are two n× n random matrices

ζ := [ζf,w] and η := [ηf,w],

in which each ζf,w and ηf,w is randomly drawn from continuous distributions with bounded

supports in R+. We assume without loss of generality that all common values and pri-

vate values are uniformly distributed over [0, 1].11 We normalize the utility of remaining

unmatched equal to 0 so that all firms and workers are mutually acceptable to each other.

Example 1 (Linear utilities). For each pair (f, w), utilities are defined as

Uf,w = λUCw + (1− λU)ζf,w, and

Vf,w = λVCf + (1− λV )ηf,w,

where λU , λV ∈ (0, 1). All four components (Cw, Cf , ζf,w, ηf,w) have the uniform distribution

over [0, 1].

The common value component introduces vertical preferences. Firms with high common

values tend to be ranked highly by workers, and vice versa, agents on each side of the market

have a commonality of preferences. In practice, commonality is prevalent. In the NRMP,

medical school graduates often consider the US News and World Report as a guide for

prestigious hospitals, and all hospitals want to hire candidates with strong recommendation

letters. The private-value component introduces idiosyncratic horizontal preferences.

All agents have distinct utilities with probability one. For each market realization

〈F,W, u, v〉, each firm f ∈ F is associated with a strict preference list

�f= w,w′, . . . , w′′ if and only if uf,w > uf,w′ > · · · > uf,w′′ .

Similarly, each worker w ∈ W is associated with a strict preference list �w.

We study the properties of stable matchings in a sequence of random markets

〈Fn,Wn, Un, Vn〉∞n=1.

The index n will be omitted whenever doing so is not confusing.

11Whatever distribution we assume, there always exists a change of variables that delivers the uniform
distribution, and we can transform utility functions monotonically.
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To get some intuitions of the main results, we sometimes consider two extreme cases,

which are not included in our main model. The pure common value model assumes Uf,w =

Cw and Vf,w = Cf . All firms (and workers) have an identical preference list for workers

(respectively, for firms). The pure private value model assumes Uf,w = ζf,w and Vf,w = ηf,w.

A firm’s ordering of workers is equally likely to be any permutation of the n workers.

2.2 Results

We show incentive compatibility of all stable matching mechanisms in the simplified model.

It turns out that agents in stable matchings of a large market match assortatively in the

common value dimension and manage to obtain favorable matches in the private value di-

mension. An important implication is that each agent receives similar payoffs from all stable

matchings. In the case of one-to-one matching, agents with near indifference between sta-

ble matchings would not have significant incentives to misreport their preferences to stable

mechanisms (Demange et al. (1987)).12

2.2.1 Assortative Feature of Stable Matchings

We show that agents in a stable matching of a large market match assortatively in the com-

mon value dimension and manage to obtain favorable matches in the private value dimension.

Thus, the utility of firm f in any stable matching is close to

U(common value of a worker in the same position as f,

maximum of the support of the workers’ private values).

Take a firm f ∈ F who submits a preference list to a stable matching mechanism in a

market instance 〈F,W, u, v〉. For every ε > 0, we define the set of firms whose utilities from

all stable matchings are within ε difference from their reference utilities:

AF (ε;u, v) :=
{
f ∈ F | U(cf , 1)− ε < UµW

f ≤ UµF
f < U(cf , 1) + ε

}
.

12While this approach is convenient to use for one-to-one matching, it is not applicable for many-to-one
matchings, where a firm may become better off than even in the firm-optimal stable matching. For many-
to-one matching, we will take a more technical approach and show the vanishing gains directly from the
assortative feature, without resorting to Demange et al. (1987).
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Theorem 1. For any ε > 0,

lim
n→∞

E
[
|AF (ε;U, V )|

n

]
= 1.13,14

To gain some intuition, let us consider the pure common value model (Uf,w = Cw and

Vf,w = Cf ). In this model, there exists a unique stable matching. Consider the firm-worker

pair with the highest common values. The pair must be matched in a stable matching. If it

were otherwise, the firm would prefer the worker to its partner and the worker would prefer

the firm to her partner, and thus they would form a blocking pair. By sequentially applying

the same argument to pairs with the next highest common values, we find that assortative

matching forms a unique stable matching. One the other hand, in the pure private-value

model (Uf,w = ζf,w and Vf,w = ηf,w), even the worst stable matching partners give utilities

asymptotically close to the upper bound (Pittel (1989); Lee and Yariv (2014); Ashlagi et al.

(Forthcoming)).15

One important implication of the assortative feature is that all stable matchings yield

very similar utilities. For every ε > 0, the expected proportion of firms (and workers)

that have less than ε differences between utilities from µF and µW converges to one as

the market size increases. In the case of one-to-one matching, the gain from manipulating

a stable mechanism is bounded by the difference between utilities from the most and the

least preferred stable matching partners. The best a firm can achieve by manipulating a

stable mechanism is the firm-optimal stable matching partner on true preferences; likewise,

the best a worker can achieve is matching with the worker-optimal stable matching partner

(Demange et al. (1987)). Therefore, most agents who are near indifferent between stable

matchings would not have significant incentives to misreport their preferences.

13Alternatively, we can write the theorem as follows:
For any ε, δ, θ > 0, there exists N such that

P

(
|AF (ε;U, V )|

n
> 1− θ

)
> 1− δ, for every n > N.

14We omit the corresponding definitions and the theorem for workers.
15Pittel (1989) does not consider utilities, but a model with pure random ordinal preferences. For each

firm, let the most preferred worker be ranked 1, the next worker 2, and so on. The sum of the rank numbers
of firms’ worker-optimal stable matching partners is asymptotically equal to n2 log−1 n. The average rank
number, with a normalization of division by the market size n, converges to 0. Compte and Jehiel (2008)
also observe that firms’ utilities from the firm-optimal stable matching become utilitarian-efficient as the
market size increases. Ashlagi et al. (Forthcoming) show that unequal numbers of agents on two sides lead
to near indifference between stable matchings even in small markets.

11



We emphasize that our main result requires enough randomness in preferences. To il-

lustrate this idea, consider a large replica of a small market with multiple stable matchings

(Alkan and Gale, 2003; Bodoh-Creed, 2013; Azevedo and Hatfield, 2013).16 We consider each

firm or worker as a type, and each firm-worker pair receives utilities according to the pair of

types. The wedge between utilities from stable matchings remains the same regardless how

many times we replicate the finite market. Also, it is necessary that the numbers of agents

on both sides grow. Azevedo and Leshno (Forthcoming) considers markets where only the

worker side gets large. Each firm has non-vanishing market power so that it can manipulate

stable mechanisms.

2.2.2 Incentive Compatibility of Stable Mechanisms

The previous theorem suggests incentive compatibility of stable matching mechanisms: at

any fixed costs, the proportion of agents who have no incentive to manipulate a stable

matching mechanism converges to one as the market size increases. However, this requires

the condition that all other agents truthfully reveal their preferences. This condition is

not guaranteed to hold, as some agents may have large incentives to misrepresent their

preferences.

We want to show truthful revelation as an equilibrium behavior of a game induced by

a stable matching mechanism. We consider an ε-Nash equilibrium, in which agents best-

respond to other agents’ strategies approximately such that no one can gain more than ε by

switching to an alternative strategy.

Theorem 2. For any ε, δ, θ > 0, there exists N such that with probability at least (1− δ) a

market of size n > N has an ε-Nash equilibrium in which (1− θ) proportion of agents reveal

their true preferences.

The equilibrium strategy that we identify is simple. Most agents merely report their true

preferences. Agents who misreport their preferences use truncation strategies : submitting a

preference list of the first k (k ≤ n) in the same order as the true preference list. Truncations

are natural strategies. Agents do not carefully devise the order of the reported preference

list.

The equilibrium is based on two important properties of truncations strategies. First,

truncation strategies are undominated (Roth and Vande Vate (1991)): for any given submit-

ted preferences by other agents, an agent always has a best response that is a truncation of

16The models studied in these papers are much more general than a simple replica, and the main questions
differ from incentive compatibility.
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her true preference list. Thus, each agent can restrictively play a simple truncation strategy

without loss in payoffs. Second, when some agents play truncation strategies and benefit,

it reduces the gap in utility from different stable matchings for all agents. Let � be a true

preference profile and �′ differ from � in that a coalition of firms and workers profitably

misreport their preferences using truncations. The final matching outcome, which is stable

given agents’ reported preferences, is stable on true preferences as well, because reversing

the truncation from the reported preferences to true ones do not create blocking pairs. Since

all stable matchings under �′ are also stable under �, the gap in utility from different stable

matchings is reduced by truncations.

In the ε-Nash equilibrium, a small proportion of agents who have potential gains from

manipulations larger than ε submit truncations of their true preferences. There exist prof-

itable truncations by these agents such that those who truncate their preferences have no

incentive to truncate further. Then, participants who initially have smaller than ε differences

in utilities from stable matchings will have even less difference in utilities from stable match-

ings under the announced preferences, so they will have no significant incentive to respond

to others’ truncations.

3 Many-to-one Matching

We next consider a large many-to-one matching in which each firm hires up to a fixed

number of workers. As in the one-to-one matching, we introduce latent utilities, which in

turn generate ordinal preferences. We show that agents in large many-to-one markets are

most likely to have only a vanishingly small utility gain by misreporting their preferences,

given that all other agents reveal their true preferences. By restricting agents to a class of

simple strategies (truncation strategies with capacity constraints), we show that most agents

reveal their true preferences as an equilibrium behavior.

3.1 Setup

3.1.1 Many-to-one Matching

Let F be the set of n firms and W be the set of m workers. Each firm has a capacity, the

number of workers it can hire. We denote firms’ capacities by q = 〈qf〉f∈F . Each worker w

has a strict preference list �w over firms. Similarly, each firm f has a strict preference list

�f of “individual” workers. Let Pf be firm f ’s preferences over the set of all subsets of W .

13



We assume that Pf is responsive to �f (Roth (1985)). That is, given any W ′ ⊂ W with

|W ′| < qf , (1) for every w /∈ W ′, W ′ ∪ {w}PfW ′ if and only if w is acceptable, and (2) for

every w,w′ /∈ W ′, W ′ ∪ {w}PfW ′ ∪ {w′} if and only if w �f w′.
A matching µ is a function from F ∪W to the set of subsets of F ∪W such that (i) for

every w ∈ W , µ(w) ⊂ F and |µ(w)| ≤ 1, (ii) for every f ∈ F , µ(f) ⊂ W and |µ(f)| ≤ qf ,

and (iii) for every firm-worker pair (f, w), µ(w) = {f} if and only if w ∈ µ(f). We often

write µ(w) = f when µ(w) = {f}, and µ(w) = w when µ(w) = ∅.
A matching µ is individually rational if each worker is matched to an acceptable firm

and each firm is matched to “individually” acceptable workers. A matching µ is blocked by

a firm-worker pair (f, w) if f �w µ(w), and either w �f w′ for some w′ ∈ µ(f) or |µ(f)| < qf

and w is acceptable to f . A matching is stable if it is individually rational and has no

blocking pair.

The set of stable matchings is uniquely determined by �: preference lists over individual

partners (see Lemma 5.6 in Roth and Sotomayor (1990)). As such, several properties of stable

matchings in one-to-one matching carry over to many-to-one matching. The set of stable

matchings is nonempty, there exist firm-optimal and worker-optimal stable matchings, and

firms and workers have opposite preferences over two distinct stable matchings (see Gale and

Shapley (1962), and Lemma 5.6, Corollary 5.9, and Theorem 5.29 in Roth and Sotomayor

(1990)). We will denote many-to-one matching markets by using preference profiles over

individual partners only.

With the same reason and following the literature, we consider stable mechanisms that

take preference lists of individual partners and capacities. That is, a mechanism M is a

function (�,q) 7→ M(�,q). In particular, each firm submits preferences over individual

workers only. A mechanism M is called stable if M(�,q) is a stable matching with respect

to (�,q).

In many-to-one matching, incentive compatibility is even harder to achieve for stable

matching mechanisms than it is in one-to-one matching. No stable matching mechanism,

including the firm-optimal stable mechanism, makes it a dominant strategy for all firms to

state true preferences and capacities. In some situations, firms can manipulate a stable

mechanism and become even better off than they would have been in the firm-optimal stable

matching (Roth, 1985).
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3.1.2 Random Utilities

A random market is a tuple 〈F,q,W, U, V 〉, in which U = [Uf,w] and V = [Vf,w] are two

n×m random matrices representing individual utilities. Similar to one-to-one matching, the

individual utilities are defined as

Uf,w := U(Cw, ζf,w) and

Vf,w := V (Cf , ηf,w).

As before, Cw and Cf are common values, ζf,w and ηf,w are independent private values, and

U(., .) and V (., .) are continuous and strictly increasing functions from R2
+ to R+. As in the

one-to-one matching, we assume without loss of generality that common values and private

values are uniformly distributed over [0, 1].

We assume that all firms have capacities up to q. A responsive ordinal preferences will

be represented by an aggregate function Φ : Rq
+ → R+ such that the utility a firm f receives

from a subset of workers {w1, w2, . . . , wk} ⊂ W with k ≤ qf is

Uf,{w1,w2,...,wk} := Φ(Uf,w1 , Uf,w2 , . . . , Uf,wk
, 0, . . . , 0).

The aggregate function Φ is symmetric (i.e., the value from any q-tuple remains the same

for any permutation), continuous, and strictly increasing in every argument.

We study the properties of stable matchings in a sequence of random markets

〈Fn,Wmn , Un×mn , Vn×mn〉∞n=1

with simplifying assumptions: all firms have an equal capacity q (fixed for all market size n)

and mn = q × n. This assumption eases our expositions, and the results remain the same

in an alternative setup, in which capacities are i.i.d samples from an underlying distribution

over {1, 2, . . . , q}.

3.2 Results

Similar to one-to-one matching, stable matchings in large many-to-one markets match agents

assortatively in the common value dimension. From these assortative stable matchings, we

show that the gain from manipulating the worker-optimal stable mechanism by playing

truncation strategies and capacity misreports vanishes.
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3.2.1 Assortative Feature of Stable Matchings

Define φ(u) := Φ(u, u, . . . , u).

We show that a firm f ∈ F with common value c would expect to achieve an approximate

payoff of φ ◦ U(c, 1).

Take a market instance 〈F,W, u, v〉. For every ε, we define the set of firms whose utilities

from all stable matchings are within ε difference from their reference levels:

AMF (ε;u, v) := {f ∈ F |φ ◦ U(cf , 1)− ε < UµW
f ≤ UµF

f < φ ◦ U(cf , 1) + ε}.17

The first theorem of one-to-one matching remains the same.

Theorem 3. For any ε > 0,

lim
n→∞

E
[
|AMF (ε;U, V )|

n

]
= 1.

As in one-to-one matching, agents in large many-to-one markets match assortatively in

the common value dimension and obtain favorable matches in the private-value dimension.

However, the above theorem does not directly imply incentive compatibility of stable mech-

anisms. In many-to-one matching, the gain from manipulating a stable mechanism is not

bounded by the gap in utilities from stable matchings. As such, we derive incentive com-

patibility (in a limited environment, which we explain in the next section) directly from the

assortative feature of stable matchings through careful reasonings. Given a market realiza-

tion, take a firm f with a common value cf . Let cw be the lowest common value among the

workers matched to f . The assortative feature of stable matchings suggests that the firm f

probably matches to a worker with very good private value. As such, a significant gain from

manipulation is achievable only by matching to a worker with a common value significantly

higher than cw. However, those workers are probably out of reach for the firm f as they are

matched to other firms with common values significantly higher than cf .

3.2.2 Incentive Compatibility of the Worker-optimal Stable Mechanism

We derive truthful revelation as an equilibrium behavior of a game induced by a stable

matching mechanism in a restricted environment: the worker-optimal stable mechanism is

applied, and firms’ may manipulate it by using truncation strategies and capacity misrepre-

sentations only. The restricted environment is motivated by the NRMP. The worker-optimal

17The superscript M refers to many-to-one matching.
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stable mechanism is the core of the current matching algorithm, and truncations strategies

and capacity misrepresentations are the most easily conceivable manipulations.

Theorem 4. Suppose that the worker-optimal stable mechanism is applied, and firms may

manipulate the mechanism by truncation strategies and capacity misrepresentations only.

For any ε, δ, θ > 0, there exists N such that with probability at least (1 − δ), a market of

size n > N has an ε-Nash equilibrium in which (1− θ) proportion of agents reveal their true

preferences.

We chose to restrict the environment because of our limited understanding of how some

agents’ manipulations affect other agents’ incentives in the literature. Previously in one-

to-one matching, truncation strategies are undominated, and an agent’s truncation reduces

other agents’ incentives for manipulations. But in many-to-one matching, truncation strate-

gies may be dominated (not every gain by manipulations is achievable by playing truncation

strategies). We may consider dropping strategies, a class of undominated strategies in many-

to-one matching (Kojima and Pathak, 2009), but an agent’s dropping strategy may increase

other agents’ incentives (see Example 2 in Ashlagi and Klijn (2012)).

In the restricted environment, we can trace how some agents’ manipulations affect other

agents’ incentives to misreport their preferences. The worker-optimal stable matching mech-

anism makes it a dominant strategy for every worker to submit her true preferences (Theorem

5.16 in Roth and Sotomayor (1990)). Solely firms may want to manipulate the mechanism

by playing truncation strategies combined with capacity misrepresentations. On the other

hand, each firm’s truncation strategy combined with capacity misrepresentations make all

other firms weakly better off (Theorems 5.34 and 5.35 in Roth and Sotomayor (1990)). Every

firm’s profitable manipulation makes all firms even better off than at the stable matching.

As most firms in the stable matching have favorable matches in the private value dimension,

their payoff increases must come from re-matching workers with higher common values. Such

improvement is likely to be infeasible.

4 Intuition Behind the Proofs

Our proof is based on a new technique from random bipartite graph theory for matching

models. To prove the main theorem, in each market realization, we count the number of

firms and workers satisfying certain conditions. We draw a graph with a set of firms and

workers whose common values are above certain levels. We join each firm-worker pair by
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an edge if one of their private values is significantly lower than the upper bound of the

support. Then, every firm-worker pair, where both the firm and the worker fail to achieve

certain threshold levels of utility in a stable matching, must be joined by an edge. Their

private values would otherwise both be so high that they would prefer each other to their

current partners and thus block the stable matching. For each realized graph, we consider

the bi-partitioned subset of nodes such that every pair of nodes, one from each partition, is

joined by an edge. It is known that the possibility of having such a relatively large subset

of nodes becomes small as the initial set of nodes increases (Dawande et al., 2001). That

is, the set of firms and workers, whose common values are high but who fail to achieve high

levels of utility, will remain relatively small, as the market size increases. We describe the

techniques in greater depth in the following subsections and relegate a detailed proof to the

online appendix.

4.1 A Random Bipartite Graph Model

A graph G is a pair (V,E), where V is a set called nodes and E is a set of unordered pairs

(i, j) or (j, i) of i, j ∈ V called edges. The nodes i and j are called the endpoints of (i, j).

We say that a graph G = (V,E) is bipartite if its node set V can be partitioned into two

disjoint subsets V1 and V2 such that each of its edges has one endpoint in V1 and the other

in V2. A biclique of a bipartite graph G = (V1 ∪ V2, E) is a set of nodes U1 ∪ U2 such that

U1 ⊂ V1, U2 ⊂ V2, and for all i ∈ U1 and j ∈ U2, (i, j) ∈ E. In other words, a biclique is

a complete bipartite subgraph of G. We say that a biclique is balanced if the size of U1

is equal to the size of U2 (i.e., |U1| = |U2|), and we refer to a balanced biclique with the

maximum size as a maximal balanced biclique.

Given a partitioned set V1∪V2, we randomly construct bipartite graphs so that each pair

of nodes, one in V1 and the other in V2, is included in E independently with probability p.

By abuse of notation, we denote a random bipartite graph by G(V1 ∪ V2, p).

We use the following theorem in the proof.

Theorem 5 (Dawande et al. (2001)). Consider a random bipartite graph G(V1∪V2, p), where

0 < p < 1 is a constant, |V1| = |V2| = n, and βn = 2 log n/ log 1
p
. If a maximal balanced

biclique of this graph has size B ×B, then

P (βn/2 ≤ B ≤ βn)→ 1, as n→∞.
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4.2 Intuition of the Proofs

We demonstrate how to use techniques from the theory of random bipartite graphs in a

simplified model, called a three-tier market of one-to-one matching with linear utilities.

In a three-tier market, firms and workers are partitioned into three tiers and endowed

with tier-specific common values. That is, F is partitioned into F1, F2, and F3, and W is

partitioned into W1, W2, and W3. common values are uniquely determined by tiers such that

cF1 > cF2 > cF3 and cW1 > cW2 > cW3.

Private values, ζf,w and ηf,w, are randomly drawn from uniform distributions over [0, 1]. For

simplicity, we assume that all tiers are of equal size:

|Fk| = |Wk| = n/3 (k = 1, 2, 3).

If f ∈ Fk and w ∈ Wl are matched with each other, then they receive utilities

Uf,w = cWl + ζf,w and Vf,w = cFk + ηf,w.

We find an asymptotic lower bound on utilities that firms in Tier 1 receive in a stable

matching. The lower bound is defined as the level arbitrarily close to uW2 + 1 − ε: the

maximal utility that a firm can achieve by matching with workers in Tier 2. That is, firms in

Tier 1 achieve high levels of utility due to the existence of workers in Tier 2. Although not

necessarily matched with workers in Tier 2, firms in Tier 1 would otherwise form blocking

pairs with workers in Tier 2. Formally, we define the set of firms in Tier 1 that fail to achieve

the specified utility level in the worker-optimal stable matching as

F̄ :=
{
f ∈ F1 | uµWf ≤ cW2 + 1− ε

}
,

and show that

E
[
|F̄ |
n/3

]
→ 0, as n→∞.

Given realized private values, we draw a bipartite graph with the set of firms in Tier 1

and workers in tiers up to 2 (i.e., Tier 1 and Tier 2) as a bi-partitioned set of nodes (see the

left figure in Figure 1). Each pair of f ∈ F1 and w ∈ W1 ∪W2 is joined by an edge if and
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only if one of their private values is low:

ζf,w ≤ 1− ε or ηf,w ≤ 1− (cW1 − cW2).

We define the set of workers in tiers up to 2 matched with firms not in Tier 1 as

W̄ := {w ∈ W1 ∪W2 | µW (w) /∈ F1} .

Then, F̄ ∪ W̄ is a biclique: i.e., every firm-worker pair from F̄ and W̄ is joined by an edge

(as illustrated by the right figure in Figure 1).

F W

T1

T2

T3

F W

T1

T2

T3

F̄

W̄

Figure 1: For each realized utility, we draw a bipartite graph with firms in Tier 1 and workers in
tiers up to 2 as the partitioned set of nodes (left). Firms in Tier 1 receiving low utilities (F̄ ) and
workers in tiers up to 2 matched with firms, not in Tier 1 (W̄ ) form a biclique (right).

To see why F̄ ∪ W̄ is a biclique, suppose that f ∈ F̄ and w ∈ W̄ are not joined. Since

f ∈ F̄ ,

uµWf ≤ cW2 + 1− ε.

Since w ∈ W̄ , the worker is not matched with a firm in tier 1, and thus

vµWw ≤ cF2 + 1.

That is, f and w mutually fail to achieve high levels of utility.
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On the other hand, since they are not joined by an edge,

ζf,w > 1− ε and ηf,w > 1− (cF1 − cF2),

and therefore

uf,w > cW2 + 1− ε and vf,w > cF1 + 1− (cF1 − cF2) = cF2 + 1.

In other words, the firm-worker pair’s private values are mutually so high that they would

have achieved high utilities by forming a blocking pair. This contradicts the fact that µW is

a stable matching.

This construction of a bipartite graph fits into a random bipartite graph model. Since

the private values are i.i.d, each firm-worker pair is joined by an edge independently and

with an identical probability. Suppose that the bi-partitioned set of nodes has a size on the

order of n, and each pair of nodes is joined by an edge independently with a fixed probability.

Then, by Theorem 5, a maximum balanced biclique has a size on the order of log(n) with

a sequence of probabilities converging to 1 as n increases. Also, W̄ contains at least n/3

workers as there are 2n/3 workers in tiers up to 2, but only n/3 firms in tier 1. Therefore,

F̄ must have a size, at most, on the order of log(n). The biclique F̄ ∪ W̄ would otherwise

contain a balanced biclique with a size bigger than the order of log(n), violating Theorem 5.

Lastly, E
[
|F̄ |
n/3

]
→ 0 follows immediately from log(n)/n→ 0.

To prove the main theorem (without tier structure or linear utility), we continue the

proof as if we have a model with tiers assigned by common values. Suppose the common

values of firms and workers are distributed uniformly over [0, 1]. To study an asymptotic

payoff from any stable matching for a firm f with common value c̄ > 0, we take ĉ and c̃

such that 0 < ĉ < c̃ < c̄. We partition the unit interval into [0, ĉ), [ĉ, c̃), [c̃, c̄), and [c̄, 1].

Firms and workers are, in turn, grouped into tiers 1-4, where agents in the same tier have

common values in the same subinterval. As before, we find an asymptotic lower bound of

utilities for firms in Tier 1: i.e., firms with common values above c̄. This time, because the

common values are random, the number of firms and the number of workers in each tier are

random. Moreover, agents in adjacent tiers may have arbitrarily close common values. As

such, utilities of Tier 1 firms will be bounded above by U(c̃, ū) − ε: a level slightly lower

than the maximum utility from workers in Tier 3, rather than Tier 2. As we choose ĉ and c̃

arbitrarily close to c̄, and ε arbitrarily small, the asymptotic lower bound becomes close to

U(c̄, ū): the maximal utility achievable by matching with a worker in the position of c̄.
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5 The Speed of Convergence

We study the speed of convergence in our results. As the speed depend on the utility

functions and the distributions of the common and private values, we consider the case of

linear utilities (see Example 1) and deterministic common values:

〈cf1 , cf2 , . . . , cfn〉 = 〈cw1 , cw2 , . . . , cwn〉 =

〈
1− 1

n
, 1− 2

n
, . . . ,

1

n
, 0

〉
.18

We prove that

Theorem 6. For εn = 6λn−1/4,

P

(
|AF (ε;U, V )|

n
> θn

)
≤ δn,

where θn = O(n−1/4) and δn = o(e−n
1/2

).

To get some intuitions on the convergence speed, consider an n × n random matrix in

which each element is independently either 0 with probability p or 1 otherwise. How large

can a square sub-matrix, in which all elements are zero, be? As n increases, it becomes very

difficult to have a large sub-matrix with all zero elements. Dawande et al. (2001) shows that

the maximum size of sub-matrices with all zero elements is within O(log n) with probability

1 − o(e−n
1/2

). Our main theorem counts the number of agents with strong incentives for

manipulation. The number corresponds to the size of a biclique in a random graph, and

each biclique, in turn, corresponds to a sub-matrix with all zero elements in a random

matrix. As such, the chance of having a large number of agents with strong incentives for

manipulation vanishes quickly.

In a market the size of the NRMP, our large market approach seems to give more com-

pelling results than the approach in the previous studies.

First, the convergence speed in probability is faster. For any arbitrary ε, θ > 0, the chance

for a market having a large (> θ) proportion of agents with significant (> ε) incentives to

manipulate a stable mechanism vanishes with speed o(e−n
1/2

). This convergence speed in

probability is faster than O(1/n), the corresponding speed in Immorlica and Mahdian (2005)

and Kojima and Pathak (2009) (see Remark 1 in the online appendix of Kojima and Pathak

18The assumption of deterministic common values is without loss of generality because the distribution of
deterministic common values and the empirical distribution of common values from the uniform distribution
converge to each other at an exponential rate (see Fact ?? in the online appendix).
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(2009)). A real life market of a reasonable size would be explained by our result with a

higher probability than the previous studies.

Second, while we could consider only slowly vanishing εn in theory,19 a simulation study

shows that the average maximum gain from manipulations vanishes quickly. We simulate

markets with sizes of 27, 28, . . . , 214(= 16, 384) and 26, 000. For each market size n, we

simulate 100 markets of linear utilities (Example 1). All common and private values are

drawn from the uniform distribution on [0, 1]. For each realized market, we compute each

firm’s maximum utility gain by manipulation (i.e., the wedge between utilities from firm-

optimal and worker-optimal stable matchings), averaged over all firms.

Figure 2 shows the simulation results for one-to-one matching markets. In Panel (a), the

solid black line, the long dashed line, and the short dashed line depict the results for the

markets with the commonality levels of 1/4, 1/2, and 3/4, respectively. Even with a market

size of 211(= 2, 048), the average maximum gain by manipulation comes close to 0.01, which

is 1% of the utility range. When the market size reaches 26, 000, the average maximum gain

by manipulation measures around 0.0034, 0.0013, 0.0004, respectively. We compare this

convergence speed with the speed of εn in the previous studies’ εn-Nash equilibrium. For a

one-to-one markets, εn corresponds to the chance that a market of size n contains multiple

stable matchings. As such, for each market size n, we simulate 200 markets of linear utilities

with the maximum preference length equals to 30. The scale of the vertical axis of Panel (b)

shows that the proportion of markets with multiple stable matchings vanishes at a slower

speed.20

Similarly, we simulate the speeds of vanishing incentives in many-to-one markets. We

simulate markets of sizes 23, 24, . . . , 214, or 26, 000, in which each firm hires 2, 4, or 8 workers.

For each firm, we find the sum of payoffs from matched workers and divide the sum by the

firm’s capacity. Thus, the utility is in the range of [0, 1]. We compute Φ ◦ U(cf , 1) − UµW
f :

the wedge between each firm’s maximum conceivable utility given the firm’s common value

and the utility from the worker-optimal stable matching. Figure 3 illustrates the numerical

results on the average maximum gain. The top left, top right, and bottom panels correspond

to the markets in which each firm hires 2, 4, and 8 workers, respectively. In each panel, the

solid black line, the long dashed line, and the short dashed line depict the results for the

19Still, the speed O(n−1/4) is faster than O(1/ log n), the corresponding speed in the environment of pure
private-values, Uf,w = ζf,w and Vf,w = ηf,w (see Footnote 15).

20It is important to note that this comparison depends on the maximum preference length. We can scale
down or up εn in Panel (b) by choosing a lower or higher maximum lengths. For example, if the maximum
length is 1, no market has multiple stable matchings: εn = 0 for all n. If the maximum length is 26, 000,
most large markets would have multiple stable matchings: εn ≈ 1 for n ≈ 26, 000.
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(a) εn = The expected maximum gain by manipula-
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(b) εn = The chance of multiple stable matchings
(the length of preference lists ≤ 30).

Figure 2: The comparison between the convergence speeds of εn.

markets with the commonality levels of 1/4, 1/2, and 3/4, respectively. In all cases, when

the number of workers exceeds 212(= 4, 096), the average maximum gain is bounded above

by 0.05. The maximum gain falls below 0.014 in all three panels as the number of workers

becomes 26, 000.

6 Incomplete Information

We have so far considered a market with complete information: agents are assumed to be

able to assess the exact gain by misrepresenting preferences. Expecting market participants

to have this much information is obviously not realistic, but participants with limited infor-

mation would be more likely to passively submit their true preferences.

In this respect, we consider a market with incomplete information for the case of one-

to-one matching and explore a possibility to find a stronger truth-telling incentive. We

consider a model in which common values are known to all participants, but private values

are known to only the agent who receives the utilities. We will extrapolate findings from the

case of complete information to study the incentive compatibility of stable matchings under
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(b) Each firm hires 4 workers.
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(c) Each firm hires 8 workers.

Figure 3: The convergence speeds of vanishing incentives in many-to-one matching

incomplete information.

Let Πf be a firm f ’s information about U and V :

Πf = 〈Cw, ζf,w〉w∈W ∪ 〈Cf ′〉f ′∈F .

Take any market realization 〈F,W, u, v〉. For each firm f , we define its expected utilities

from the extreme stable matchings as EV µF
f := E

[
V µF
f | πf

]
and EV µW

f := E
[
V µW
f | πf

]
.

Then for each ε, we denote the set of firms whose expected utilities from all stable matchings

are within ε difference of their reference utilities:

AEF (ε;u, v) :=
{
f ∈ F |U(cf , 1)− ε < EV µW

f ≤ EV µF
f < U(cf , 1) + ε

}
.

The first theorem, assortative expected payoffs from stable matchings, remains the same.

Theorem 7. For any ε > 0,

lim
n→∞

E
[
|AEF (ε;U, V )|

n

]
= 1.

The intuition behind this theorem is very simple: an expected value is an average of all

realized values. It is likely that most agents have insignificant differences in utilities from

stable matchings and their reference levels (Theorem 1). The expected difference in utilities

from stable matchings is a convex combination of differences realized in all market instances.

For most agents, the expected differences would be negligible as well.
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In each market realization, the expected utility gain by manipulation is bounded by the

gap between expected utilities from two extreme stable matchings. Thus, as in the case of

complete information, the above theorem implies that each agent has vanishing incentives

to misreport her preferences, conditioned on all other agents’ truth-telling.

However, it turns out to be difficult to find a formal equilibrium of truth-telling. In the

literature, we have a limited understanding of strategic behavior under incomplete infor-

mation: a tractable class of undominated strategies is not known, and it is not feasible to

trace how all possible manipulations of some agents affect others’ incentives. We managed

to find a truth-telling equilibrium only in a special environment: a pure private-value model

in which Uf,w = ζf,w. In this environment, an ε-Bayesian-Nash equilibrium in which every

participant reveals her true preference list exists with high probabilities.

Theorem 8. Suppose a stable matching mechanism is applied to the pure private-value

markets with incomplete information. For any ε, δ > 0, there exists N such that a market of

size n > N has an ε-Bayesian-Nash equilibrium in which with probability at least (1− δ), all

agents reveal their true preference lists.

The ε-Bayesian-Nash equilibrium is based on a result stronger than Theorem 7. In the

pure private value model, asymptotically every participant has an insignificant expected gain

from manipulation, conditioned on others’ truth-telling.21 Given this observation, consider

the following strategy profile. Agents, who have small expected utility gains by manipulation,

conditioned on others’ truth-telling, submit their true preferences. Any agent, who expects a

large utility gain, conditioned on all others’ truth-telling, plays any best-response to all other

agents’ truth-telling. The strategyprofile is an ε-Bayesian-Nash equilibrium: participants are

approximately best-responding to other agents’ strategies (that may not be truth-telling). If

agents play the equilibrium strategy, it is most likely that all agents tell the truth in a large

market. That is, with a high probability, every agent, whose truth-telling is a best-response

to all other agents’ truth-telling, is indeed best-responding to other agents’ equilibrium

strategies.

21We can state Theorem 7 as “for any ε, δ, θ > 0, there exists N such that P
(
|AE

F (ε;U,V )|
n > 1− θ

)
>

1− δ, for every n > N .” If utilities are pure private-values, we could write P
(
|AE

F (ε;U,V )|
n = 1

)
> 1− δ.
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7 Conclusion

We demonstrate an assortative feature of stable matchings as the number of market par-

ticipants increases. An important implication of one-to-one matching markets is that the

proportion of agents who have significant incentives to manipulate stable matching mecha-

nisms vanishes in large markets. Moreover, with high probability, the truthful reporting is

an ε-Nash equilibrium of the game induced by a stable matching mechanism. These impli-

cations hold in many-to-one matching when the worker-proposing Gale-Shapley is applied,

and firms play truncation strategies and capacity misrepresentations. We prove our results

using techniques from the theory of random bipartite graphs.
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