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Abstract

We study collective choices from the revealed preference theory viewpoint. For

every product set of individual actions, joint choices are called Nash-rationalizable if

there exists a preference relation for each player such that the selected joint actions are

Nash equilibria of the corresponding game. We characterize Nash-rationalizable joint

choice behavior by zero-sum games, or games of conflicting interests. If the joint choice

behavior forms a product subset, the behavior is called interchangeable. We prove that

interchangeability is the only additional empirical condition which distinguishes zero-

sum games from general non-cooperative games.

JEL Classification Numbers: C72, D70
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1 Introduction

Suppose two players choose joint actions from a finite set of alternatives. As outside ob-

servers, we witness the joint choice behavior, but we may not know the exact payoffs leading

the players to such group choices. By only observing joint choice behavior, we may ask

whether people play Nash equilibrium, and, if they do, what type of games they play.

This paper derives falsifiable conditions of joint choice behavior from equilibrium play of

a zero-sum game, or a game of conflicting interests. That is, we study additional behavioral

implications of a game being zero-sum, in addition to the hypothesis of Nash equilibrium

play. Instead of assuming a specific pattern of joint behavior, this study requires only weak
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rationality axioms: complete and transitive preferences at the individual level, and Nash

equilibrium play at the collective level.

The main motivation of this exercise is that we want to be able to refute the notion that

two agents are in “direct competition,” and detect whether or not there could be “gains

from cooperation,” without knowing the exact payoffs. However, its applications are not

limited to cases where we only observe joint choice behavior. Even when we observe the

exact monetary returns (e.g., a laboratory experiment), the observed monetary returns may

differ from utility payoffs which players perceive. For example, if each subject cares about

her monetary return relative to her opponent’s return, the joint behavior may follow Nash

equilibrium behavior of a zero-sum game rather than the original game. This is because

a two-person game with symmetric monetary returns becomes a symmetric zero-sum game

with respect to relative monetary returns.1 Based on the observed joint choice behavior,

we can test whether subjects play the original game or the zero-sum game induced by their

relative monetary returns.

Sprumont (2000) assumes that econometricians are given a choice correspondence defined

on product sets of individual actions. The question is when the observed joint behavior is

consistent with Nash equilibrium play, assuming players are rational and they play games

simultaneously. Sprumont proves that the observed joint behavior is Nash rationalizable if

and only if it satisfies Persistent under Restriction and Persistent under Expansion axioms,

which are similar to classical axioms of choice theory (see, e.g., Moulin (1985)). We retain

Sprumont’s basic abstract setup and ask, “Is the choice correspondence Nash-rationalizable

with a certain game category, specifically, zero-sum games?”

As an introductory example, Figure 1 shows how Nash-rationalizable choice behavior

may not be rationalizable by a zero-sum game. In this example, player 1 conceivably choose

either U or D and player 2 may choose L or R. Following classical choice theory, we may

observe how players choose when choice sets are restricted. Figure 1 shows all the possible

product subsets of {U,D} × {L,R} from which two players choose their joint actions. For

each product subset, (∗) is the action profile chosen by the players. We can verify that the

joint choice behavior exhibited in Figure 1 is consistent with Nash equilibrium behavior of

a coordination game in which coordinating to (U,L) or (D,R) gives a higher payoff to both

players.

This choice correspondence, however, does not follow Nash equilibrium behavior for any

zero-sum game. We observe that (U,L) is chosen from {(U,L), (D,L)} and (D,R) is chosen

from {(D,L), (D,R)}. Assuming that the choices are Nash equilibria of a zero-sum game,

these choices imply that for player 1, (U,L) is preferred to (D,L); for player 2, (D,R) is

1See, e.g., Duersch, Oechssler, and Schipper (2011).

2



*

*

*

*

*

*

U

D

U

D

U

D

U

D

L  R
L  R

L  R

L   R

Figure 1: Nash-rationalizable but not by zero-sum games

preferred to (D,L), which indicates player 1 prefers (D,L) to (D,R). On the other hand,

(D,R) is chosen from {(D,R), (U,R)} and (U,L) is chosen from {(U,L), (U,R)}. For player

1, (D,R) is preferred to (U,R); for player 2, (U,L) is preferred to (U,R), which implies

player 1 prefers (U,R) to (U,L). As a result, the preference of player 1 forms a cycle, which

implies that all possible joint actions are indeed indifferent for player 1 (and thus for player

2 by the fact that the game is zero-sum). Therefore, we would expect to see all strategy

profiles chosen.

This example shows that once we have two choices on the diagonal in a table of joint

actions, the other two pairs of actions must also be chosen in order for the joint choices

to follow Nash equilibrium behavior for a zero-sum game. When choice behavior forms

a product subset for each game table, we say that the choice behavior is interchangeable.

Although it is easy to identify that interchangeability is necessary, whether the condition is

sufficient is not as straightforward.

Our main theorem shows that this interchangeability of joint choice behavior is indeed

the only additional condition that distinguishes the testable implications of zero-sum games

from those of general non-cooperative games. It is worth pointing out two assumptions

behind the theorem. First, we restrict Nash rationalizability to pure strategy Nash equilibria.

Second, we assume complete observations, where choices are observed from all product sets

of individual actions.

This paper follows a broad range of revealed preference theory. Since Samuelson (1938),

there have been numerous papers on revealed preference theory in various settings. In the

context of collective choice, Wilson (1970) and Plott (1974) study cooperative games and

find that the Weak Axiom implies the solution concept proposed by von Neumann and Mor-

genstern. More recently, Echenique and Ivanov (2011) and Chambers and Echenique (2011)

study the testable implications of collective decision making such as household behavior and

bargaining over money.

The testable implications of game theoretic models have grown only recently relative to

the history and popularity of game theory. Peleg and Tijs (1996) and Sprumont (2000) find
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conditions of joint choice behaviors being consistent with Nash equilibria, as the correspond-

ing games are reduced or expanded. Galambos (2009) weakens the complete observation

assumption, and Demuynck and Lauwers (2009) study joint choices over lotteries. The two

approaches adopt Richter (1971)’s congruence axiom, and find that the modified versions of

the congruence axiom are necessary and sufficient conditions for Nash rationalizability. Ray

and Zhou (2001), and Ray and Snyder (2003) consider extensive form games, and find condi-

tions such that sequential choices are rationalizable by a subgame perfect Nash equilibrium.

Xu and Zhou (2007) characterize conditions under which choices are rationalizable by game

trees when the choice process is not observable.

In the context of more concrete games, Forges and Minelli (2009) apply their main result

to market games, in which each player’s budget constraint depends on other players’ actions.

For the model of Cournot competition, Carvajal, Deb, Fenske, and Quah (2010) consider

the case of observing a finite set of prices and quantities, and Cherchye, Demuynck, and

De Rock (2011) consider the case of observing price and quantity functions defined over

exogenous variables. Both studies characterize conditions under which their observed data

are consistent with the model of Cournot competition.

2 Model and Main Theorem

There are two players, 1 and 2. Let A1 and A2 be finite sets of actions that players 1 and

2 may conceivably choose. A := A1 × A2 is the set of all possible joint actions. Following

the classical revealed preference approach, suppose we observe choices from B := B1 × B2

in which B1 ⊆ A1 and B2 ⊆ A2 are the sets of available actions for player 1 and 2. In this

model, all choices from each B ⊆ A can be summarized as a choice correspondence.

Definition 1 Let A := {B = B1 × B2|∅ 6= B ⊆ A} be the set of all nonempty product sets

included in A. A joint choice correspondence f assigns to each B ∈ A a nonempty set

f(B) ⊆ B.

In the case where at most one player has more than one available action in B, we say

that B is a line. Depending on the player, the line is either in a column or a row - the

former when player 1 has choices, the latter when player 2 has choices. In addition, we call

a product subset B ∈ A a feasible set. For any B
′′ ⊆ B and B

′′ ∈ A, we call B
′′

a feasible

subset of B. For any B,B
′ ∈ A, define B ∨B′

as the set of all possible pairs of actions from

Bi and B
′
i (i = 1, 2). That is,
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B ∨B′
:=

∏
i=1,2

(Bi ∪B
′

i)

Suppose we wish to test whether a choice correspondence is rational or not. First, we

shall assume that each player is individually rational. That is, each player has a preference

relation over joint actions, and these relations are complete and transitive.2 We call such

relations weak orders. In addition, we wish to test if the players are collectively rational.

In terms of collectively rationality, we assume that players play a Nash equilibrium. The

following definition is our notion of rationalizability of collective choice behavior.

Definition 2 A joint choice correspondence f is Nash-rationalizable if there are two

weak orders �1,�2 on A such that for each B ∈ A, f(B) coincides with the set of all Nash

equilibria of the game (B,�1,�2).3

Sprumont (2000) introduces the following conditions for Nash-rationalizability. These

conditions are extended versions of Sen’s α, β, and γ in individual choice theory (see, e.g.,

Moulin (1985)).4 When a feasible set is restricted to a line, the first condition coincides with

Sen’s α and β, and the second condition coincides with Sen’s γ.

Definition 3 A joint choice correspondence over A is:

• Persistent under Contraction (PC):

(PC1) : For all B,B
′ ∈ A with B

′ ⊆ B, f(B) ∩B′ ⊆ f(B
′
).

(PC2) : Moreover, if B is a line, B′ ⊆ B and f(B) ∩B′ 6= ∅ implies f(B
′
) ⊆ f(B).

• Persistent under Expansion (PE): For all B,B
′ ∈ A, f(B)∩ f(B

′
) ⊆ f(B ∨B′

).

With these two conditions, Sprumont (2000) establishes the following theorem.

Theorem 4 A joint choice correspondence f is Nash-rationalizable if and only if it satisfies

(PC) and (PE).

Using this model of Nash-rationalizability, we restrict the set of available rationalizing

games from the set of all non-cooperative games to include only zero-sum games, or games of

conflicting interests. Under the conditions of zero-sum games, the preferences of two players

2A relation � is called complete if for all joint choices a, b ∈ A, it follows that a � b or b � a, and is called
transitive if for all a, b, c ∈ A for which a � b and b � c, it follows that a � c.

3In other words, if (b1, b2) ∈ f(B), then (b1, b2) �1 (b′1, b2) and (b1, b2) �2 (b1, b
′
2) for every (b′1, b2) ∈ B

and (b1, b
′
2) ∈ B.

4Although Moulin (1985) calls these conditions Chernoff and Expansion, Sen’s α, β, and γ are more
conventional terminologies in individual choice theory. See, for example, Austen-Smith and Banks (1994).
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are opposed. Therefore, while a general non-cooperative game consists of two weak orders,

zero-sum games require only a single weak order.

Definition 5 Let � be a weak order over A, and � is the inverse relation of �.5 The game

defined by (A,�,�) is called a two-person zero-sum game. We say that a joint choice

correspondence f is Nash-rationalizable by a zero-sum game if there is a weak order

� on A such that for each B ∈ A, f(B) coincides with the set of all Nash equilibria of the

game (B,�,�).

As demonstrated in Example 1, not all Nash-rationalizable joint choice correspondences

are Nash-rationalizable by a zero-sum game. In the example, we needed one additional

condition to fill the gap in the product space of the two distinct choices. We formally state

this condition in the following definition.

Definition 6 (Interchangeability (INT)) A joint choice correspondence f over A is in-

terchangeable if for all B ∈ A and all b, b
′ ∈ f(B), {b} ∨ {b′} ⊆ f(B).

It is well-known that any pair of equilibrium strategies of a zero-sum game, one for each

player, is an equilibrium strategy profile (see, e.g., Luce and Raiffa (1989)). Provided that

players face a zero-sum game, and observed joint actions follow the Nash-equilibria of the

corresponding games, the choice correspondence must be interchangeable. Our contribution

is showing that interchangeability is indeed the only additional behavioral implication which

distinguishes zero-sum games from general non-cooperative games. We summarize this result

as the following main theorem.

Theorem 7 A joint choice correspondence is Nash-rationalizable by a zero-sum game if and

only if it satisfies (PC), (PE), and (INT).

3 Discussion

Our model assumes the existence of a joint choice for all B ∈ A. Accordingly, verifying

whether a joint choice correspondence is Nash-rationalizable means assuming that all feasi-

ble sets have a pure strategy Nash equilibrium. Although a small literature provides condi-

tions of zero-sum games having pure strategy Nash equilibria (Shapley, 1964; Radzik, 1991;

5Let � be a binary relation over A. We define the inverse relation � as

for all a, b ∈ A for which a � b, b � a.

The inverse relation of a weak order is also a weak order. The proof is immediate by definition.
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Duersch, Oechssler, and Schipper, forthcoming), the characterization of conditions that are

both necessary and sufficient remains an open question. We may avoid this existence issue

by investigating either mixed strategies or correlated strategies. However, these strategies

introduce other difficulties since observed joint choices do not directly represent underlying

preferences.

Our model also requires observed choices from all feasible sets. We may weaken this

requirement by assuming incomplete observations, where a choice correspondence is defined

on A′ ⊆ A. In classical choice theory, Richter (1971) shows that a choice correspondence

with incomplete observations is rationalizable by a weak order if and only if it is congruent.

Galambos (2009) generalizes Richter’s congruence condition, and shows that the generalized

congruence condition is necessary and sufficient for Nash-rationalizability with incomplete

observations.

Unfortunately, interchangeability together with individual-level congruent choices is not

sufficient for Nash-rationalizability by a zero-sum game. For example, suppose A′
is the set

of B := {U,M} × {L,C,R}, B′ := {U,M,D} × {C,R}, and all lines in B and B′. Suppose

f(B) = {(M,R)} and f(B′) = {(U,C)}, and assume that choices in each line satisfy (PE)

and (PC). The choices are congruent in terms of Galambos (2009), and therefore, Nash-

rationalizable. However, the choices are not Nash-rationalizable by a zero-sum game. From

{U,M}× {C,R}, (U,C) and (M,R) are the only choices consistent with the choices in each

line, but this observation violates interchangeability.6

A Proof of the Main Theorem

The necessity of (PC), (PE), and (INT) Suppose a joint choice correspondence f is

Nash-rationalizable by a zero-sum game (A,�,�). The necessity of (PC) and (PE) is obvious

from the definition of Nash equilibrium. To show the necessity of (INT), let B = B1×B2 ∈ A
6 Alternatively, we may consider a congruent joint choice correspondence f : A′ ⇒ A, where A′ ⊆ A is a

set of observed games. We define a binary relation � on A by: for a = (a1, a2), b = (b1, b2) ∈ A,

a � b if and only if there exists B ∈ A′ such that a, b ∈ B, and

either a2 = b2 and a ∈ f(B), or a1 = b1 and b ∈ f(B).

If there is a finite sequence c, d, . . . , e such that a � c � d · · · � e � b, then we write a T� b. We say that a
joint choice correspondence f is congruent, if for all a, b ∈ A and all B ∈ A′,

a T� b, a ∈ B, and b ∈ f(B) =⇒ a ∈ f(B).

Assuming that a joint choice correspondence is congruent is, however, almost the same as assuming its
Nash-rationalizability by a zero-sum game. In particular, when A′ = A, the assumption implies that the
relation � is consistent (see Definition 8). Most of the proof in this paper is devoted to showing that � is
consistent (see Section A.1).
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and b = (b1, b2), b
′ = (b′1, b

′
2) ∈ f(B). Note that b1, b

′
1 ∈ B1 and b2, b

′
2 ∈ B2, which implies

that (b1, b
′
2) and (b′1, b2) are also in B.

Since (b1, b2) is a Nash equilibrium of the game (B,�,�),

i) player 1 prefers (b1, b2) to (b′1, b2): i.e. (b1, b2) � (b′1, b2), and

ii) player 2 prefers (b1, b2) to (b1, b
′
2): i.e. (b1, b2) � (b1, b

′
2), or equivalently (b1, b

′
2) �

(b1, b2).

In addition, since (b′1, b
′
2) is a Nash equilibrium of the game (B,�,�),

iii) player 1 prefers (b′1, b
′
2) to (b1, b

′
2): i.e. (b′1, b

′
2) � (b1, b

′
2), and

iv) player 2 prefers (b′1, b
′
2) to (b′1, b2): i.e. (b′1, b

′
2) � (b′1, b2), or equivalently (b′1, b2) �

(b′1, b
′
2).

By transitivity of �, from (i) and (iv) we obtain (b1, b2) � (b′1, b2) � (b′1, b
′
2), and from

(ii) and (iii) we obtain (b′1, b
′
2) � (b1, b

′
2) � (b1, b2). Therefore, (b1, b2), (b′1, b2), (b1, b

′
2), and

(b′1, b
′
2) are all indifferent for player 1 and player 2.

In this situation, (b′1, b2) is a Nash equilibrium of the game (B,�,�): for any b′′1 ∈ B1,

since (b1, b2) is a Nash equilibrium, we have (b1, b2) � (b′′1, b2), and thus (b′1, b2) � (b′′1, b2);

from player 2’s viewpoint, for any b′′2 ∈ B2, since (b′1, b
′
2) is a Nash equilibrium, we have

(b′1, b
′
2) � (b′1, b

′′
2), and thus (b′1, b2) � (b′1, b

′′
2). Similarly, (b1, b

′
2) is also a Nash equilibrium of

the game (B,�,�). In all, {b} ∨ {b′} is a subset of the set of Nash equilibria of the game

(B,�,�), and therefore a subset of f(B).

The sufficiency of (PC), (PE), and (INT) To prove sufficiency, we construct a prefer-

ence � over A, with which for all B ∈ A, f(B) coincides with the set of all Nash equilibria

of (B,�,�).

In individual choice theory, given a finite alternative set X and a choice correspondence

g, Sen (1971) defines base relation R∗ as

xR∗y if and only if x ∈ g({x, y}).

Similarly, we define two relations �∗ and �∗∗ as follows: for any a = (a1, a2), b = (b1, b2) ∈
A,

a �∗ b if and only if a2 = b2 and a ∈ f({a1, b1} × {a2}),

a �∗∗ b if and only if a1 = b1 and b ∈ f({a1} × {a2, b2})
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Note that �∗ and �∗∗ are disjoint, and �∗∗ is defined “inversely” from the convention

of individual choice theory. Finally, let � be the union of �∗ and �∗∗. We arrange player

1’s conceivable actions in a column and player 2’s actions in a row, thereby constructing a

table of joint actions. Then, in each line (PC) is equivalent to Sen’s α and β, and �∗ and

�∗∗ are defined as analogous with the base relation. �∗ represents the base relation in each

column, and �∗∗ represents the base relation in each row, except �∗∗ is defined inversely. In

such case, Sen (1971) shows that �∗ is a weak order in each column, and �∗∗ is an inverse

relation of a weak order in each row; therefore, the union � is a weak order in both columns

and rows. Note that � is not yet defined on any pair of joint actions across the lines. In

order to construct a complete relation over A, we need some preliminary definitions.

Definition 8 (Consistency) Let R be a relation over X = {x1, x2, . . . , xl, . . . } and P be

the strict counterpart of R. A sequence x1Rx2R · · ·RxlPx1 is called a PR-cycle (or a cycle).

If a relation does not have any cycle, we say that it is consistent.

Definition 9 (Extension) Given any arbitrary binary relation R over X, if a binary rela-

tion R′ over X is such that

xRy implies xR
′
y

xPy implies xP
′
y

then R
′

is called an extension of R.

In the following proof, we show using interchangeability that� is consistent (Section A.1).

Then, we show using (PE) and (PC) that any weak order extension of � Nash-rationalizes

the joint choice correspondence by a zero-sum game (Section A.2).

A.1 � is consistent.

By means of contradiction, suppose that there exists {a1, · · · , aN} ⊆ A such that a1 � a2 �
· · · � aN � a1. Since � is the union of two disjoint sets, �∗ and �∗∗, � is either �∗ or �∗∗

depending on whether {ai, aj} is in a column or a row.

Hereafter, we restrict our attention to cycles of an even length of at least 4 where the

links in the cycle alternate between �∗∗ and �∗. This restriction does not lead to a loss of

generality. First, we only need to consider cycles that alternate because any cycle containing

consecutive �∗ or �∗∗ can be reduced by means of transitivity to a shorter cycle without

consecutive �∗ or �∗∗. In addition, there is no cycle with a length of 2 such as a1 �∗ a2 �∗∗

a1. By definition of �∗, a12 = a22, and by definition of �∗∗, a11 = a21, which together imply

that a1 = a2. Then, we have a1 �∗∗ a1. We can also rule out cycles of odd lengths, since
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we can shorten any cycle of a odd length by transitivity to a cycle of an even length. For

instance, the cycle a �∗∗ b �∗ c �∗∗ d �∗ e �∗∗ a of length 5 can be reduced to the cycle

b �∗ c �∗∗ d �∗ e �∗∗ b of length 4. We also restrict attention to the case where the cycle

begins with �∗∗. The case where the cycle begins with �∗ is omitted, but can be proved in

a similar way.

First, we prove that there is no cycle of length 4. Suppose a �∗∗ b �∗ c �∗∗ d �∗ a. By

definition, we have a1 = b1, b2 = c2, c1 = d1 and d2 = a2. Then {a, b, c, d} makes feasible sets

as depicted in Figure 2. In part (i) of the figure, each dashed arrow corresponds to either

�∗ or �∗∗ and the solid arrow corresponds to d �∗ a. The tail of each arrow is the element

from the left hand side of the preference relation.

(i) (ii) (iii)

a b

cd

a b*

c

a

cd*

Figure 2: A cycle of length 4

Parts (ii) and (iii) of Figure 2 illustrate the choice correspondence generating �∗ and

�∗∗ for each feasible set. Note that b ∈ f({a, b}) ∩ f({b, c}), and d ∈ f({a, d}) ∩ f({c, d}).7

Then (PE) implies that b ∈ f({a, b, c, d}) and d ∈ f({a, b, c, d}). Since f is interchangeable,

and since a1 = b1 and a2 = d2, a = (b1, d2) must also be chosen; i.e., a ∈ f({a, b, c, d}).
Likewise, c = (d1, b2) implies c ∈ f({a, b, c, d}). Finally, (PC) implies that a ∈ f({a, d}),
which contradicts d �∗ a. So, there cannot be any cycle with length 4.

Now, let us make the induction hypothesis that there is no cycle of length 2(n−1) where

n ≥ 3. Given this hypothesis, we prove that there is no cycle of length 2n.

By reordering the list of individual actions for player 1 and for player 2 from a cycle

a1 � a2 � · · · a2n � a1, we can generate the table of joint actions in Figure 3. Here, the

dashed arrows and the solid arrow represent the links in the cycle as in Figure 2.

The proof by induction argument requires the following steps. Step 1 to 3 gives prefer-

ences shown in Figure 8, and Step 4 shows other preferences as reflected in Figure 10-(ii).

Step 5 shows the contradiction of these preferences identified in Step 1 to 3 and Step 4.

7Again for player 2, �∗∗ is defined inversely from the convention of base relation. Accordingly, arrows in
the figures inversely represent player 2’s revealed preference.
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a1

e

        

               a2n-4         c1

           d        a2n-3      a2n-2

a2n          ...            b2   b1      a2n-1

.

.

.

.
.

.

Figure 3: A cycle of length 2n (n ≥ 3)

Step 1: Consider the feasible set {a2n−3, a2n−2, a2n−1, b1}. In addition to the known prefer-

ences from the cycle, we can verify f({a2n−3, b1}) and f({b1, a2n−1}). The four cases in Figure

4 below contain all possible cases of f({a2n−3, b1}) and f({b1, a2n−1}). In these two feasible

sets, it must not be the case that either a2n−3 ∈ f({a2n−3, b1}) and a2n−1 ∈ f({b1, a2n−1})
(fig (i)), or b1 ∈ f({a2n−3, b1}) and b1 ∈ f({b1, a2n−1}) (fig (ii)).

(i.)

         a2n-3 a2n-2

    a2n                b1 a2n-1  

(ii.)

         a2n-3 a2n-2

    a2n                b1 a2n-1  

(iii.)

         a2n-3 a2n-2

    a2n                b1 a2n-1  

(iv.)

         a2n-3 a2n-2

    a2n                b1 a2n-1  

Figure 4: A part of the cycle with length 2n

In case (i), a2n−4 �∗ b1 by transitivity of �∗ in the left column, and b1 �∗∗ a2n by

transitivity of �∗∗ in the bottom row. These two preferences induce the cycle a1 � · · · �
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a2n−4 � b1 � a2n � a1 which has length 2(n − 1), a contradiction. In case (ii), b1 ∈
f({a2n−3, b1}) ∩ f({b1, a2n−1}) and a2n−2 ∈ f({a2n−3, a2n−2}) ∩ f({a2n−2, a2n−1}). (PE) in-

duces that a2n−2 and b1 are in f({a2n−3, a2n−2, a2n−1, b1}); interchangeability of f implies that

all four joint actions are in f({a2n−3, a2n−2, a2n−1, b1}). Therefore, we have an indifference

relation ∼ in {a2n−3, b1} and {b1, a2n−1}, which gives a special case of (i).

Excluding case (i) and (ii), either (iii) or (iv) must be true. We will prove that the

induction step is true in case (iii). The proof in case (iv) is omitted here as it can be shown

with exactly the same approach as that taken in case (iii).

(i.)

         a2n-3 a2n-2

    a2n                b1 a2n-1  

a2n-4           c

(ii.)

         a2n-3 a2n-2

    a2n                b1 a2n-1  

a2n-4           c

(iii.)

         a2n-3 a2n-2

    a2n                b1 a2n-1  

a2n-4           c

(iv.)

         a2n-3 a2n-2

    a2n                b1 a2n-1  

a2n-4           c

Figure 5: Verifying more preferences

Step 2: Figure 5 contains every possible case of f({a2n−4, c1}) and f({c1, a2n−2}). Using

the same argument used for the case (i) and (ii) of f({a2n−3, b1}) and f({b1, a2n−1}) in Step

1, we can rule out the cases of (i) and (ii) in Figure 5. In addition, case (iii), {a2n−4} =

f({a2n−4, c1}) and {c1} = f({c1, a2n−2}), is not possible either. This can be shown first by

observing b1 �∗ a2n−4. If it is not the case, completeness of �∗ in the left column gives

a2n−4 �∗ b1 which, combined with b1 �∗∗ a2n by transitivity of �∗∗ in the bottom row,

induces the cycle a1 �∗∗ · · · �∗∗ a2n−4 �∗ b1 �∗∗ a2n �∗ a1 whose length is 2(n− 1).

Once (iii) and b1 �∗ a2n−4 are obtained (see Figure 6), we consider the set of joint actions

{a2n−4, c1, b1, a2n−1}. Any choice from this feasible set violates the (PC) in one feasible
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subset of {a2n−4, c1, b1, a2n−1}. Suppose c1 ∈ f({a2n−4, c1, b1, a2n−1}), then c /∈ f({a2n−4, c1})
violates (PC). Likewise any joint action in {a2n−4, c1, b1, a2n−1} is not a choice. Thus case

(iv), {c1} = f({a2n−4, c1}) and {a2n−2} = f({c1, a2n−2}), must be true.

(iii.)

         a2n-3 a2n-2

    a2n                b1 a2n-1  

a2n-4           c1

Figure 6: Ruling out the case (iii)

Step 3: Considering f({a2n−5, d}) and f({d, a2n−3}), we can rule out the cases of either

a2n−5 ∈ f({a2n−5, d}) and a2n−3 ∈ f({d, a2n−3}), or d ∈ f({a2n−5, d}) and d ∈ f({d, a2n−3})
by the same argument used for f({a2n−3, b1}) & f({b1, a2n−1}) and f({a2n−4, c}) & f({c, a2n−2})
in the previous steps. Accordingly, we only have cases of either {a2n−5} = f({a2n−5, d}) and

{d} = f({d, a2n−3}), or {d} = f({a2n−5, d}) and {a2n−3} = f({d, a2n−3}); case (i) or case (ii)

in Figure 7, respectively. Case (i) is ruled out because once we have a2n−5 �∗ d, it must be

that a2n−2 �∗∗ d. If this is not true, then d �∗∗ a2n−2, which induces one of the following

cases.

a2n-5       a2n-4 c1

  d       a2n-3      a2n-2

  b2           b1            a2n-1 

#

a2n-5       a2n-4 c1

  d       a2n-3      a2n-2

  b2           b1            a2n-1 

(i.) (ii.)

Figure 7: Verifying more preferences.

1. If the cycle has length 6 (a2n−5 is a1 and there is no # in fig(i)), b2 is equal to a2n.

Thus we have a2n−1 �∗∗ b2 and b2 �∗ d by transitivity of �∗. As a result, d �∗∗ a2n−2

13



makes a cycle with length 4, d �∗∗ a2n−2 �∗ a2n−1 �∗∗ b2 �∗ d, which contradicts the

induction hypothesis.

2. If the cycle has length 8 or more (there is a2n−6 , ‘#’ in the fig (i), which is not a1),

a2n−6 �∗ d �∗∗ a2n−2 by transitivity of �∗ and �∗∗ in the left column and the middle

row. These preferences shorten the cycle, which contradicts the induction hypothesis.

Therefore, a2n−2 �∗∗ dmust be true in case (i). Regardless of what is in f({a2n−5, d, c1, a2n−2}),
it violates (PC). For instance, if d ∈ f({a2n−5, d, c1, a2n−2}) then it must be d ∈ f({a2n−5, d}),
which violates a2n−5 �∗ d. Consequently, case (ii) in Figure 7 must be the option.

By applying Step 2 and 3 sequentially, we can verify more preferences. Figure 8 summa-

rizes the result of this process. In the following proof, Step 4 is necessary only for a cycle

whose length is at least 8. For a cycle with length 6, we already know all the preferences

that we will verify in Step 4.

a1

e

        

               a2n-4         c1

           d        a2n-3      a2n-2

a2n          ...       b3           b2   b1      a2n-1

.

.

.

.
.

.
c2

Figure 8: Preferences verified in Step 2 and 3

Step 4: Denote the joint action (a2n−11 , a2(n−k)−1) as bm and the joint action (a
2(n−m−1)
1 , a

2(n−m)
2 )

as cm, where k = 1, 2, . . . , n − 2. Figure 8 shows where bm and cm (1 ≤ m ≤ n − 2) are

located. Let τ be a function from {b1, b2, . . . , bn−2} to A such that τ(bm) = (a
2n−(2m+1)
1 , bm2 ).

Figures 9, 10, and 11 show how the function values are located in the feasible set table.

(τ(bm) takes its place on the stairway of which bm is at the bottom.) We prove the following

claim.

Claim 10 For any bm (1 ≤ m ≤ n− 2), bm � τ(bm) and bm � a2n−1

14



Proof : We prove by induction. Note that we already proved in Step 2 that this claim holds

for b1.

Induction 1: The claim holds for b2. That is, b2 �∗ τ(b2) (or a2n−5) and b2 �∗∗ a2n−1.

(i.)

(ii.) (iii.)

     d     a2n-3          a2n-2

   a2n      b2            b1            a2n-1  

τ(b2)        a2n-4 c1

     d     a2n-3          a2n-2

   a2n      b2            b1            a2n-1  

τ(b2)        a2n-4 c1

     d     a2n-3          a2n-2

   a2n      b2            b1            a2n-1  

τ(b2)        a2n-4 c1

Figure 9: Verifying more preferences involving b2

Proof : Considering feasible sets, {τ(b2), b2} and {b2, a2n−1} (see Figure 9), it is not

the case that τ(b2) ∈ f({τ(b2), b2}) and a2n−1 ∈ f({b2, a2n−5}) (case (i)). Otherwise,

it shortens the cycle with a2n−5 = τ(b2) �∗ b2 �∗∗ a2n. (We used transitivity in

the bottom row.) Therefore, by completeness in each line, we should have either

a2n−1 �∗∗ b2 or b2 �∗ τ(b2). In the former case, in order not to have a cycle of

length 6, which includes {τ(b2), a2n−4, a2n−3, a2n−2, a2n−1, b2}, f must give τ(b2) �∗ b2

(fig (ii)). In the latter case, in order not to have a cycle of length 6, f must give

b2 �∗∗ a2n−1 (fig (iii)). However, case (ii) is ruled out by considering the feasible

set, {τ(b2), c1, b2, a2n−1}. To demonstrate this, note that a2n−1 �∗ c1. Otherwise,

τ(b2) �∗∗ c1 �∗ a2n−1 shortens the cycle. If case (ii) is true, then any choice from

{τ(b2), c1, b2, a2n−1} violates (PC). For example, if τ(b2) ∈ f({τ(b2), c1, b2, a2n−1}), then

it must be true that τ(b2) ∈ f({τ(b2), c1}). This contradicts τ(b2) �∗∗ c1. (Note again

that �∗∗ is defined inversely.) Therefore, (iii) must be the case in Figure 9.

Induction 2: If the claim holds for bm−2, it also holds for bm (3 ≤ m ≤ n− 2).
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Proof : With the same approach as Induction 1, f should not give τ(bm) �∗ bm and

bm �∗∗ a2n−1; otherwise, we have a shorter cycle including τ(bm) �∗ bm �∗∗ a2n. Thus,

it must be either a2n−1 �∗∗ bm or bm �∗ τ(bm). In the former case, not to have a cycle,

bm �∗ τ(bm) �∗∗ · · · �∗ a2n−1 �∗∗ bm which has length 2m + 2 ≤ 2(n− 1), it must be

true that τ(bm) �∗ bm (case (i) in Figure 10).8 In the latter case, not to have a cycle,

τ(bm) �∗∗ · · · �∗ a2n−1 �∗ bm �∗ τ(bm) which has length 2m+2 ≤ 2(n−1), it must be

true that bm �∗∗ a2n−1. (case (ii) in Figure 10.) However, case (i) is ruled out. First,

observe that bm−2 �∗ cm−1 must be true; otherwise τ(bm) �∗∗ cm−1 �∗ bm−2 �∗∗ a2n

leads to a shorter cycle. In addition, transitivity of �∗∗ in the bottom row gives

bm−2 �∗∗ bm. Then, in the feasible set, {τ(bm), bm, bm−2, cm−1}, any choice violates

(PC). Therefore, (ii) must be the case in f({τ(bm), bm}) and f({bm, a2n−1}).

By induction, bm � τ(bm) and bm � a2n−1 for m = 1, . . . , n− 2. Claim 10 holds.

τ(bm)     cm-1

    ...

 bm   bm-1     bm-2               a2n-1

(i.)

τ(bm)     cm-1

    ...

 bm   bm-1     bm-2               a2n-1

(ii.)

Figure 10: Verifying preferences involving bm

Step 5: Results from Steps 2 and 3, and results from Step 4 contradict each other.

Proof : If we denote the joint action (τ(bn−2)1, a
1
2) as e (see Figure 11), then Step 2 and 3 gives

e �∗ a1 and e �∗∗ τ(bn−2). We showed in Step 4 that bn−2 �∗ τ(bn−2) and bn−2 �∗∗ a2n−1.
Moreover, it must be true that e �∗ a2n, since otherwise, a2n �∗ e �∗∗ a4 shortens the cycle.

8Although we explicitly write the proof only for the case of cycle beginning with �∗∗, every single step so
far could have been reproduced for cases where cycles begin with �∗. Here, we used the induction hypothesis,
“there is no cycle with a length of 2(n− 1),” from the counterpart proof of cycles begining with �∗.
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On the other hand, bn−2 �∗∗ a2n by transitivity of �∗∗ in the bottom row. We can observe

that any choice from the feasible set, {e, τ(bn−2), a2n, bn−2}, violates (PC). This contradiction

completes the proof of Step 5, thereby completing the proof of consistency of �.

  a1

  a2n      bn-2  ...       a2n-1

  e   τ(bn-2)    a4

.

.

.

.
.
.

Figure 11: A contradiction

A.2 Characterizing a rationalizing preference relation.

Claim 11 For all B ∈ A, f(B) coincides with the set of all Nash equilibria of the game

(B,�,�).

Proof : Take any B = B1 × B2 ∈ A, and let NE(B) be the set of all Nash equilibria of the

game (B,�,�). First, to show f(B) ⊆ NE(B), we take any b∗ = (b∗1, b
∗
2) ∈ f(B). Since f

satisfies (PC), b∗ ∈ f(B
′
) for all B

′ ∈ A and B
′ ⊆ B. Therefore, for any {b∗, (b1, b∗2)} ⊆ B,

b∗ ∈ f({b∗, (b1, b∗2)}). By the definition of �∗, we have b∗ �∗ (b1, b
∗
2), which is equal to

b∗ � (b1, b
∗
2). Similarly, for any {b∗, (b∗1, b2)} ⊆ B, b∗ ∈ f({b∗, (b∗1, b2)}). The definition of

�∗∗ gives (b∗1, b2) �∗∗ b∗, which is equal to (b∗1, b2) � b∗, or b∗ � (b∗1, b2). Since b∗ � (b1, b
∗
2)

and b∗ � (b∗1, b2), for all (b1, b
∗
2) ∈ B and (b∗1, b2) ∈ B, b∗ is a Nash equilibrium of the game

(B,�,�).

Conversely, if b∗ ∈ NE(B), for any (b1, b
∗
2) ∈ B, b∗ � (b1, b

∗
2). Since, only �∗, and not �∗∗,

is defined in columns, we have b∗ �∗ (b1, b
∗
2). The definition of �∗ gives b∗ ∈ f({b∗, (b1, b∗2)}),

and (PE) implies b∗ ∈ f(B1×{b∗2}) (#). b∗ ∈ NE(B) implies b∗ � (b∗1, b2) for all (b∗1, b2) ∈ B
(or (b∗1, b2) � b∗). Because we defined only �∗∗, and not �∗, in rows, we have (b∗1, b2) �∗∗ b∗.
The definition of �∗∗ gives b∗ ∈ f({b∗, (b∗1, b2)}) and (PE) induces b∗ ∈ f({b∗1} × B2) (##).

Lastly, (#), (##), and (PE) imply that b∗ ∈ f(B).
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We have shown that � is consistent and f(B) coincides with NE(B) for all B ∈ A.

Suzumura (1976) shows that a consistent relation has a weak order extension. Since the

extension generates additional preferences only between two joint choices which are not in a

line, this extension does not affect the result of Claim 11. Therefore, Claim 11 is still valid

with the weak order extension of �. This completes the proof of the main theorem.
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